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ABSTRACT
Accurate semantic segmentation models typically require signifi-
cant computational resources, inhibiting their use in practical ap-
plications. Recent works rely on well-crafted lightweight models to
achieve fast inference. However, these models cannot flexibly adapt
to varying accuracy and efficiency requirements. In this paper, we
propose a simple but effective slimmable semantic segmentation
(SlimSeg) method, which can be executed at different capacities dur-
ing inference depending on the desired accuracy-efficiency tradeoff.
More specifically, we employ parametrized channel slimming by
stepwise downward knowledge distillation during training. Moti-
vated by the observation that the differences between segmentation
results of each submodel are mainly near the semantic borders, we
introduce an additional boundary guided semantic segmentation
loss to further improve the performance of each submodel. We
show that our proposed SlimSeg with various mainstream networks
can produce flexible models that provide dynamic adjustment of
computational cost and better performance than independent mod-
els. Extensive experiments on semantic segmentation benchmarks,
Cityscapes and CamVid, demonstrate the generalization ability of
our framework.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’22, October 10–14, 2022, Lisboa,Portugal
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9203-7/22/10. . . $15.00
https://doi.org/10.1145/3503161.3548191

CCS CONCEPTS
• Computing methodologies → Scene understanding; Image
segmentation.

KEYWORDS
Efficient semantic segmentation; Slimmable neural network; Knowl-
edge distillation; Boundary detection

ACM Reference Format:
Danna Xue, Fei Yang, Pei Wang, Luis Herranz, Jinqiu Sun, Yu Zhu, and Yan-
ning Zhang. 2022. SlimSeg: Slimmable Semantic Segmentation with Bound-
ary Supervision. In Proceedings of the 30th ACM International Conference
on Multimedia (MM ’22), October 10–14, 2022, Lisboa, Portugal. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3503161.3548191

1 INTRODUCTION
Semantic segmentation predicts the semantic category correspond-
ing to each pixel in an image. Various applications have benefited
from advances towards more accurate results, such as autonomous
driving [3, 11, 13, 17, 26–29, 32, 52, 53, 59, 60], image synthesis and
manipulation [37, 47], and medical imaging [25, 39]. Based on the
pioneering fully convolutional network [35], previous studies have
made important achievements by greatly increasing the perfor-
mance on various challenging semantic segmentation benchmarks
[1, 5, 9, 64]. Despite their superiority, these powerful models, built
upon heavy deep neural networks, suffer from the low inference
speed and strict requirements for computing devices.

Most of the existing works mainly address efficient semantic
segmentation through (i) designing compact backbone architec-
tures [11, 17, 26, 27, 40, 44, 53, 61], (ii) effective model compression
methods [3, 28, 30, 32, 38, 60], (iii) exploiting reliable context and
boundary information [13, 29, 34, 41, 52]. However, those methods
mainly speed up the inference with fixed network structures, while
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Table 1: The FLOPs and number of parameters of semantic
segmentation networks (except for the backbone) and their
proportions of the whole model, with image size 1024×2048.

Networks SFNet [29] DeepLabv3+ [2]

Backbone ResNet50 ResNet18 ResNet50 MobileNetv2

GFLOPs 436.3 | 72% 107.5 | 55% 663.5 | 45% 6.3 | 34%
Params 7.7M | 25% 1.5M | 12% 16.8M | 40% 2.7M | 59.3%

in practice, the equipped resources are quite different across di-
verse devices. Even for the same device, the availability of hardware
resources varies over time. Suppose we want to switch between
models of different sizes according to the ideal accuracy-efficiency
tradeoff. One straightforward way is to train multiple independent
models with different structures and parameters and load a specific
one during inference. However, it requires a longer training time
and more memory for storage. Unlike previous works, we focus on
improving the flexibility of the semantic segmentation model.

The recent work [57] proposed a slimmable neural network that
can adjust the width of the network for different inference speeds.
However, they mainly focus on image classification and only apply
their slimmable models as backbones on instance segmentation
tasks, while the other parts (e.g., the decoder) are non-slimmable.
Due to the resolution of the output image, even if a relatively sim-
ple structure is used in the decoder part, including up-sampling
and multi-level feature aggregation etc., the decoder still requires
a large amount of computation during inference. We show the
computation cost (in FLOPs) and the number of parameters of sev-
eral mainstream segmentation models, including SFNet [29] and
DeepLabv3+ [2], in Table 1. In these models, the Pyramid Pooling
Module (PPM) [62] and the decoder account for more than one-third
of the overall calculation, while the parameters for most of them
are the minority of the whole model. Based on [57], we focus on
semantic segmentation and aim to lower computational cost from
the perspective of reducing the overall size of the network, rather
than just backbones. Motivated by this, we propose a slimmable
semantic segmentation network (SlimSeg) that leverages the slim-
ming mechanism to dynamically adjust the channel of features on
every single layer. The network’s capacity can be switched with the
size of width according to the computational requirements, thereby
controlling the trade-off between accuracy and inference time. In
addition, we apply stepwise downward inplace distillation for train-
ing smaller subnetworks, which means that smaller subnetworks
are learned from the larger ones. This leads to consistent results
between different submodels.

Moreover, we also found that the differences between the pre-
dicted results of slimmable subnetworks with different widths
mainly exist along the semantic boundaries. Previous works [58, 66]
also report that most existing segmentation models fail to make
right predictions along the semantic boundaries. To further improve
the segmentation quality on the boundary and narrow the accuracy
gap between each subnetwork, we introduce a semantic boundary
detection head on the low-level features and additional supervision
named semantic boundary guided loss. This loss leverages the pre-
dicted boundaries as guidance to calculate a weighted bootstrapped

cross-entropy. The boundary detection head can be removed during
inference, so it does not introduce any additional computation.

Our SlimSeg is a general scheme that can adapt the existing
segmentation models to width switchable models without any new
structural design. The experimental results on Cityscapes [5] and
CamVid [1] based on SFNet [29] and DeepLabv3+ [2] demonstrate
the slimmable model has comparable accuracy to independent mod-
els. Furthermore, our method shows higher accuracy on smaller
subnetworks with the stepwise downward distillation and proposed
boundary guided loss. The contributions are summarized as follows:

• We propose a simple but effective slimmable semantic seg-
mentation method (SlimSeg) which can adjust the capacity
of the model depending on the desired trade-off between
accuracy and efficiency.

• We present the boundary supervision, including a low-level
boundary detection head and a boundary guided loss to
improve the accuracy of semantic segmentation in boundary
regions, especially for the smaller subnetworks.

• Extensive experiments and analysis indicate the efficacy and
generalization ability of our proposed method, both quanti-
tatively and qualitatively.

2 RELATEDWORKS
2.1 Generic Semantic Segmentation
A typical semantic segmentation architecture generally includes
two parts: encoder and decoder. The encoder module extracts image
features through convolution and downsampling. Generally, the
encoder is adapted from image classification models trained on
ImageNet [6], such as VGG19 [42], ResNet [2], etc. Since semantic
segmentation conduct pixel-level classification, the typical fully
connected layers are replaced by convolutional layers [35]. To uti-
lize the global context, the Pyramid Pooling Module (PPM) [2, 62] is
employed to increase the receptive field without an increase in pa-
rameters. However, massive computations are introduced by PPM
and other feature fusion modules performed on high-resolution
features neighbor to the output. To pursue better global and local
feature fusion, models [43, 63] based on more powerful backbones,
such as HRNet [46] and ViT [8], have been proposed. These models
have achieved higher accuracy, but are limited by the hardware
requirements in practice. Our approach takes advantage of the so-
phisticated models and achieves variable capacity through width
slimming, enabling fast inference while maintaining accuracy.

2.2 Efficient Semantic Segmentation
Efficient semantic segmentation needs to consider both accuracy
and computational cost. Existing methods trade accuracy and speed
along three different lines.

Hand-crafted compact backbone architecture. An effective
backbone can greatly improve the upper bound of performance.
The works [11, 17, 26, 27, 40, 44, 53, 61] design lightweight back-
bone architectures from scratch to pursue more efficient inference.
Some works [17, 27, 61] devised multiscale image cascades and fea-
ture fusion mechanisms to achieve a good accuracy-speed trade-off.
Others [26] improve existing network layers to create sufficient re-
ceptive field and densely utilize the contextual information. BiSeNet
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[53] introduced a shallow spatial branch to process full resolution
images while learning context information by a deep branch.

Machine-driven architecture optimization. Neural Archi-
tecture Search (NAS) [67] is an effective technique to switch the
labor-intensive architecture design to an automatic machine-driven
optimization process, and this technique has been applied to se-
mantic segmentation in recent years. From repeated cell structure
[38, 60] to more flexible network structure [28], different types of
network (e.g., graph convolution network [32]), or explicitly tak-
ing latency into consideration [3, 30]. FasterSeg [3] introduces the
teacher-student co-searching and flexible multi-resolution branches
aggregation structure. Although the latitude of the search space is
continuously improved [59], it still requires longer training time
and more effective search strategies.

Feature mining and aggregation. By exploiting the potential
of existing lightweight models, rather than building new archi-
tectures, these methods learn more favorable context information.
Knowledge distillation [16] has shown its effectiveness on segmen-
tation tasks by improving the accuracy of a lightweight student
model and speed-up its convergence by transferring learned knowl-
edge from a sophisticated teacher network. Liu et al. [34, 41] provide
a comprehensive analysis of feature distillation at different levels,
from various cumbersome models to compact models. Others in-
vestigate multi-level feature aggregation to alleviate the side effects
of up and down sampling [29] or enlarge the receptive field of
lightweight networks [13, 52].

Although these efficient semantic segmentation approaches im-
prove the accuracy-efficiency tradeoff from different perspectives,
the resulting model is still limited to fixed size and operating at a
single tradeoff. Unlike these methods, we enable adjustable compu-
tation with one single model and ensures good accuracy for each
submodel of different size.

2.3 Dynamic Neural Networks
Dynamic neural networks [14] reduce average inference cost by
adaptively changing characteristics of the computational graph, in-
cluding the resolution, depth, and width. Reducing the resolution
of the input image is the most straightforward way to lower compu-
tational costs. For images with relatively simple context, equivalent
prediction accuracy can be achieved with lower resolutions. Some
works [49, 51, 65] propose parallel training for multi-resolution in-
ference with a single model. Networks with dynamic depth speed
up inference by skipping residual blocks adaptively [31, 45, 48]
or early exiting when shallower subnetworks have high enough
confidence [21, 23, 51]. The number of feature channels, i.e. width,
is also a key factor of efficiency. One way of enabling various chan-
nel inference is dynamic pruning. By identifying and skipping the
insignificant channels during inference [12, 20, 24] or training a
hypernetwork to select the filters [4], the channel complexity can
be lessened. Moreover, [55–57] propose slimmable neural networks
with embedded submodels sharing parameters that are executable
at different widths, allowing immediate and adaptive accuracy-
efficiency trade-offs at runtime. Based on the success of slimmable
neural network, Liang et al. [24] improve the hardware efficiency
by introducing a dynamic slimming gate that adaptively adjusts the
network width with negligible extra computation cost. Although

dynamic neural networks have shown their effectiveness on strate-
gically allocating appropriate computational resources, most works
still focus on image classification and some other low-level vision
tasks, such as image compression [50], denoising [22] and image
generation [18]. Different from previous works, we study dynamic
semantic segmentation models through our analysis.

3 METHOD
3.1 Slimmable Segmentation Framework
Image semantic segmentation requires assigning a category label
to each pixel in the image from several semantic categories. Given
an image 𝑥 , a segmentation network S parameterized by 𝜃 imple-
ments a mapping 𝑝 = S(𝑥 ;𝜃 ), where each spatial element of 𝑝
is a probability vector indicating the probability of each seman-
tic category, from which the most probable is selected. Ideally, it
should correspond to the category indicated in the corresponding
ground truth segmentation map 𝑦 (coded as one-hot probability
vectors per pixel). During training, the loss minimized is the cross-
entropy L𝐶𝐸 (𝑝,𝑦;𝜃 ) between the predicted probability and the
ideal one-hot label. In practice, this loss is averaged over the pixels
in the image and the image-segmentation pairs (𝑥,𝑦) in the training
dataset.

In this work, we propose a flexible semantic segmentation frame-
work, named as SlimSeg, which can adapt its model capacity during
inference via the slimming mechanism to accommodate various
levels of computing power. More specifically, we define different
sets of widths (i.e. number of channels in each convolutional layer)
of the segmentation network. Thus, the segmentation network con-
tains 𝑁 subnetworks with parameters

{
𝜃𝑤1 , 𝜃𝑤2 , ..., 𝜃𝑤𝑁

}
with 𝑁

increasing widths𝑤1 < 𝑤2 < ... < 𝑤𝑁 , respectively. For every con-
volutional layer implementing slimming, the parameters are built
as subsets of larger (sub)networks as 𝜃𝑤1 ⊂ 𝜃𝑤2 ⊂ ... ⊂ 𝜃𝑤𝑁

= 𝜃 .
Then, the objective of our task becomes optimizing all the sub-
networks with

∑𝑁
𝑛=1 L𝐶𝐸

(
𝑝𝑛, 𝑦;𝜃𝑤𝑛

)
, where 𝑝𝑛 is the predicted

category probability vector of the 𝑛𝑡ℎ subnetworks with parame-
ters 𝜃𝑤𝑛

. The loss is also averaged over pixels and training data,
and then minimized over the parameters 𝜃 . Note that we could
also replace the (one-hot) ground truth label 𝑦 with the soft label
𝑝𝑛′ predicted by larger subnetworks to distill its knowledge. We
describe our loss functions in more detail in Section 3.2 and 3.3.
Henceforth, we will also omit the explicit dependencies on the
model parameters for the sake of simplicity.

The overall pipeline of our SlimSeg is illustrated in Figure 1. We
deploy width slimming on the entire network, including the en-
coder for feature extraction, the Pyramid Pooling Module [62] and
the decoder for feature aggregation and classification. The number
of channels is adjusted through the slimmable convolutional layer
[57], which produces different output feature channels by adjust-
ing the number of filters. The slimmable convolution will result
in a different output feature distribution. Following [57], we use
independent batch normalization (BN) layers for each width, which
only introduces very few parameters to the overall model.

3.2 Stepwise Downward Distillation
To utilize the knowledge learned by large submodels to guide the
learning of the smaller submodels, we apply inplace knowledge
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Figure 1: Overview of our slimmable semantic segmentation framework. (a) The whole network, including the encoder, PPM,
decoder and boundary detection head, is slimmable. The boundary detection head can be removed during inference. (c) Each
slimmable unit includes a slimmable convolution layer, independent BNs for each width and a ReLu layer. (b) The largest
network with width 𝑤𝑁 is supervised by the ground truth labels, and the smaller models with width 𝑤𝑛 are learned from
larger models with width𝑤𝑛+1 by stepwise distillation. (d) The predicted boundaries are used to generate boundary masked
probability maps for calculating the boundary guided loss.

distillation from larger (sub)networks to smaller ones. Unlike pre-
vious knowledge distillation on segmentation [34, 41], we do not
learn from an already trained (fixed) sophisticated model to im-
prove another independent compact model. We introduce stepwise
downward inplace distillation, where class probabilities estimated
from the larger subnetwork are used as soft targets for training
the next smaller subnetwork. The largest subnetwork is supervised
by the ground truth labels. Note that the parameters of a smaller
subnetwork are also a subset of larger ones, which means that the
smallest subnetwork will learn the most important features implic-
itly to guarantee the accuracy of larger submodels. This leads to
the following loss function:

L𝑠𝑒𝑔 = L𝐶𝐸 (𝑝𝑁𝑠 , 𝑦𝑠 ) +
𝑁−1∑︁
𝑛=1

L𝐾𝐷 (𝑝𝑛𝑠 , 𝑝𝑛+1𝑠 ), (1)

where L𝐶𝐸 denotes the cross entropy loss, and 𝑝𝑛𝑠 , 𝑦𝑠 are the seg-
mentation probability map predicted by the 𝑛𝑡ℎ submodel and the
ground truth semantic label, respectively. Instead of computing
the Kullback-Leibler divergence between two probabilities, we use
soft target cross-entropy loss (we denote it as L𝐾𝐷 to distinguish
it from L𝐶𝐸 , which applied with ground truth supervision). We
found that the cross-entropy between two probabilities is more sta-
ble during training than the Kullback-Leibler divergence, which is
also a common setting for the knowledge distillation in [34, 55–57].

In practice, stopping the gradients of the supervising tensor
predicted by the larger width is necessary, so that the loss of a
subnetwork will never back-propagate through the computation
graph to larger subnetworks. We performed experiments on the
effectiveness of distillation and the type of optimal teachers. The
results show that using the probability map predicted by previous

subnetworks as the soft target can lead to better performance. For
more details, see Section 4.3.

3.3 Semantic Boundary Guided Loss
Based on the training framework and distillation method presented
above, we can already obtain varying amounts of computation of
multiple subnetworks with partially shared parameters. To further
improve the performance, especially for the smaller subnetworks,
we compare the semantic labels predicted by different subnetworks
trained only with the loss L𝑠𝑒𝑔 . As illustrated in Figure 2, the
differences between the segmentation results of subnetworks with
different widths are mainly near the borders between different
semantic categories. Moreover, as the width decreases, the gap
between the predictions gets larger.

(a) Prediction of model width×1.0 (b) Difference between ×1.0 ×0.75

(d) Difference between ×1.0 ×0.25(c) Difference between ×1.0 ×0.5

Figure 2: Difference between submodels. (a) Predicted seman-
tic map of the ×1.0 model. (b)-(d) Difference map between
the smaller submodels and the ×1.0 model, where the con-
sistent (inconsistent) predicted pixels are shown as black
background (ground truth color codes). Better view in color.
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Motivated by this observation, we introduce extra boundary su-
pervision to improve the accuracy in those regions, especially for
small subnetworks. Specifically, we introduce an additional bound-
ary detection head with a simple structure, including a slimmable
unit (Figure 1 (c)) and a slimmable convolution layer with kernel
size 1 followed by a sigmoid layer, on the low-level features. The
output of this head 𝑝𝑁

𝑏
is supervised by the binary boundary masks

generated by the semantic segmentation ground truth labels 𝑦𝑏 .
The pixels within 3 pixels from the semantic border are marked as
boundary regions. We apply binary cross-entropy loss to constrain
boundary detection with:

L𝑏 = L𝐵𝐶𝐸 (𝑝𝑁𝑏 , 𝑦𝑏 ) +
𝑁−1∑︁
𝑛=1

L𝐾𝐷 (𝑝𝑛𝑏 , 𝑝
𝑛+1
𝑏

), (2)

where we also leverage knowledge distillation to subnetworks with
the soft boundary labels predicted by the larger one, except for
the largest width that uses the boundary ground truth 𝑦𝑏 . Unlike
[7], our boundary detection head is used only on training and can
be removed during inference, so it does not introduce any extra
computation. The head helps enhance the low-level features of
boundary regions.

Besides, the estimated boundary also perform as a reference to
resample the misclassified pixels on the border to calculate the
boundary guided segmentation loss, which can be regarded as a
hard sample mining strategy. As shown in Figure 1 (d), taking the
boundary probability map 𝑝𝑏 predicted by the boundary detection
head, we generate a confidence binary mask 𝑀𝑏 to locate those
pixels which might be situated near to semantic boundaries:

𝑀𝑏 (𝑢, 𝑣) =
{
𝑣𝑎𝑙𝑖𝑑, 𝑝𝑏 (𝑢, 𝑣) > 𝜏
𝑖𝑛𝑣𝑎𝑙𝑖𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (3)

The values in 𝑀𝑏 are element-wise calculated by comparing the
boundary confidential score 𝑝𝑏 at each location (𝑢, 𝑣) with a prede-
fined threshold 𝜏 . We empirically set 𝜏 to 0.7 in our experiments.
Only valid pixels are included in the loss calculation. Similar toL𝑠𝑒𝑔 ,
the cross-entropy loss and the knowledge distillation loss of the
masked semantic probabilities 𝑝𝑛𝑚𝑠 = 𝑀𝑛

𝑏
(𝑝𝑛𝑠 ), 𝑛 ∈ {1, 2, · · · , 𝑁 }

are calculated with:

L𝑔 = L𝐶𝐸 (𝑝𝑁𝑚𝑠 , 𝑦𝑠 ) +
𝑁−1∑︁
𝑛=1

L𝐾𝐷 (𝑝𝑛𝑚𝑠 , 𝑝𝑛+1𝑠 ) . (4)

Then, the loss function for training our SlimSeg is calculated as
a summation of the semantic segmentation loss L𝑠𝑒𝑔 , boundary
detection loss L𝑏 and the boundary guided segmentation loss L𝑔 :

L𝑓 𝑢𝑙𝑙 = L𝑠𝑒𝑔 + 𝜆1L𝑏 + 𝜆2L𝑔 (5)

where 𝜆1, 𝜆2 are hyperparameters, which are set to 10 and 1 in our
experiments, respectively.

Finally, to clarify the training procedure of our proposed SlimSeg,
we provide a Pytorch-style pseudo-code in Algorithm 1.

4 EXPERIMENTS
4.1 Benchmarks and Evaluation Metrics
Cityscapes. Cityscapes [5] is a first-person perspective street-
scene dataset with 19 semantic categories, 5000 fine annotated
images with 2,975, 500 and 1,525 images for training, validation and

Algorithm 1 Slimmable semantic segmentation

Ensure: Dataset D, width listW = {𝑤1,𝑤2, ...,𝑤𝑁 }
Require: Slimmable semantic segmentation network S
1: for 𝑖 = 1, 2, ..., 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
2: Get a mini-batch of image 𝑥 , semantic label 𝑦𝑠 , boundary

label 𝑦𝑏 from D.
3: Clear gradients of weights, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 .𝑧𝑒𝑟𝑜𝑔𝑟𝑎𝑑 ().
4: for𝑤 in 𝑠𝑜𝑟𝑡𝑒𝑑 (W, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 = 𝑇𝑟𝑢𝑒) do
5: Switch the BN layers to current width.
6: Execute current subnetwork, 𝑝𝑠 , 𝑝𝑏 = S(𝑥 ;𝜃𝑤).
7: Compute the masked probability, 𝑝𝑚𝑠 = 𝑀𝑏 (𝑝𝑠 ).
8: if 𝑤 = 𝑤𝑁 then
9: Compute loss with ground truth,

𝑙𝑜𝑠𝑠 = 𝐶𝐸 (𝑝𝑠 , 𝑦𝑠 ) + 𝐵𝐶𝐸 (𝑝𝑏 , 𝑦𝑏 ) +𝐶𝐸 (𝑝𝑚𝑠 , 𝑦𝑠 ).
10: else
11: Compute distillation loss,

𝑙𝑜𝑠𝑠 = 𝐾𝐷 (𝑝𝑠 , 𝑦𝑡𝑠 ) + 𝐾𝐷 (𝑝𝑏 , 𝑦𝑡𝑏 ) + 𝐾𝐷 (𝑝𝑚𝑠 , 𝑦𝑡𝑠 ).
12: end if
13: if 𝑤 > 𝑤1 then
14: Save predicted probability 𝑝𝑠 , 𝑝𝑏 as teachers 𝑦𝑡𝑠 , 𝑦𝑡𝑏 .
15: end if
16: Compute gradients, 𝑙𝑜𝑠𝑠.𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ().
17: end for
18: Update weights, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 .𝑠𝑡𝑒𝑝 ().
19: end for
20: return S

testing, respectively. The high resolution of the images (1024×2048
pixels) poses a great challenge to real-time semantic segmentation.
For a fair comparison, we only use the fine annotated images for
training.
CamVid. CamVid [1] is a road scene dataset from the perspective
of a driving automobile. It consists of 367, 101 and 233 images for
training, validation and testing with resolution 720×960. Following
the pioneering work [10, 53], we use the subset of 11 semantic
classes from the 32 provided categories for a fair comparison with
existing methods. The pixels out of the selected classes are ignored.
Evaluation Metrics. For quantitative evaluation, we report the
mean of class-wise intersection-over-union (mIoU) for accuracy
comparison. The floating-point operations per second (FLOPs) and
frames per second (FPS) are adopted for efficiency comparison.
Besides, we also give the number of parameters for model size.

4.2 Implementation Details
Training. We use the stochastic gradient descent (SGD) algorithm
to train our models with the batch size of 8, stochastic momentum
of 0.9 and weight decay of 5e-4. As a common practice, the “poly”
learning rate strategy in which the initial rate is multiplied by(
1 − 𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

)𝑝𝑜𝑤𝑒𝑟
at each iteration with the power of 0.9. All the

models are trained for 100K iterations with an initial learning rate of
0.01 and Online Hard ExampleMining (OHEM) [33] on two NVIDIA
GeForce 3090Ti GPUs with CUDA 11.0, CUDNN 8.0 by Pytorch
1.7. Data augmentation includes random horizontal flip, random
resizing with the scale range of [0.5, 2.0], and random cropping to
768 × 768 for Cityscapes and 720 × 720 for CamVid.



MM ’22, October 10–14, 2022, Lisboa,Portugal Danna Xue et al.

Inference. For inference, we use the whole image as an input
to report performance, unless explicitly mentioned. Evaluation
tricks such as sliding window inference and multiscale testing are
not adopted. The measurement of inference time is executed on a
single NVIDIA GeForce 2080Ti with CUDA 10.1, CUDNN 7.0, and
we report the FPS without TensorRT acceleration.
Architectures. We conduct the experiments based on two main-
stream semantic segmentation networks: SFNet [29] andDeepLabv3+
[2]. SFNet is based on the Feature Pyramid Network [33] architec-
ture with a backbone network pre-trained on ImageNet classifica-
tion [6] as encoder, a pyramid pooling module and a decoder aggre-
gating multi-level features from the encoder. Similarly, DeepLabv3+
[2] includes a feature encoder, an atrous spatial pyramid pooling
module and a simple decoder with only several convolutional layers
and upsampling. For SFNet, we use the slimmable ResNet50 [57]
pre-trained on ImageNet [6], and slimmable ResNet18, DFNetV1,
DFNetV2 [30] without pre-training as encoder. For DeepLabv3+, we
report the results using the slimmable ResNet50 and MobileNetv2
[57] (both are pre-trained on ImageNet) as encoder. The input of
the boundary detection head is the low level features output by the
second stage of the backbones. The resolution of the input features
are down-sampled 4 times compared to the original image. We
apply four width multipliers [0.25, 0.5, 0.75, 1.0] in our experiments,
except for Deeplabv3+-MobileNetv2 with [0.35, 0.5, 0.75, 1.0].

4.3 Ablation Study
We conduct ablation experiments to validate the effectiveness of our
width slimming training scheme, knowledge distillation method
and the proposed boundary guided loss.

Width SlimmingTraining Scheme. We compare the slimmable
model with their independently trained counterparts to demon-
strate the effectiveness of the width slimming segmentation train-
ing scheme. The independent models have the same architecture
as the slimmable subnetworks, but can only operate on a single
width. Note that both the independent and slimmable models are
trained with the loss L𝑓 𝑢𝑙𝑙 in Eq.5 for fair comparison, and the
independent models are supervised by ground truth. We report the
mIoU, number of parameters (M) and FLOPs (GMac) in Table 2.
The slimmable models outperform the independent models of all
width on SFNet (ResNet50, ResNet18) and DeepLabv3+ (ResNet50,
MobileNetv2), while for SFNet (DFNetv, DFNetv2), the larger inde-
pendent models are better than the slimmable one. We think this is
because DFNet [19] is a compact backbone designed for best speed
accuracy trade-off by neural architecture search, which have very
little space to be compressed. Therefore, the gap between slimmable
SFNet-DFNets submodels with different widths is also larger than
ResNets. In terms of the amount of computation, with about 56% of
the whole FLOPs, the submodel with width×0.75 achieves compa-
rable performance as the full model. Besides, a slimmable model
saves about 50% memories for storing the parameters compared
with several independent models, and number will increase if we
have more switchable width.

Stepwise Downward Distillation. To make the most of the
knowledge learned by larger submodels, we test different distilla-
tion settings and demonstrate the effectiveness of our distillation
method.

Table 2: Comparison of independent and slimmable models
on Cityscapes val. Bold numbers indicate the better mIoUs.

Network Width Independent Slimmable FLOPsmIoU Param mIoU Param

SFNet
ResNet50

×1.0 78.3 31.20 78.4 (0.1↑)

31.29

607.9
×0.75 77.3 17.57 77.9 (0.6↑) 343.4
×0.5 76.3 7.82 77.4 (1.1↑) 153.9
×0.25 73.2 1.97 74.4 (1.2↑) 39.4

SFNet
ResNet18

×1.0 75.0 12.87 75.6 (0.6↑)

12.89

243.4
×0.75 74.0 7.24 74.8 (0.8↑) 137.4
×0.5 71.4 3.22 72.5 (1.1↑) 61.5
×0.25 65.5 0.79 67.3 (1.8↑) 15.7

SFNet
DFNetv2

×1.0 73.6 17.88 73.1 (0.5↓)

17.91

80.2
×0.75 71.4 10.06 71.1 (0.3↓) 45.2
×0.5 70.0 4.48 69.8 (0.2↓) 20.2
×0.25 62.5 1.12 64.2 (1.7↑) 5.2

SFNet
DFNetv1

×1.0 70.0 8.42 69.4 (0.6↓)

8.44

32.8
×0.75 67.8 4.74 67.0 (0.8↓) 18.6
×0.5 65.0 2.11 65.3 (0.3↑) 8.4
×0.25 57.8 0.52 59.8 (2.0↑) 2.2

DeepLabv3+
ResNet50

×1.0 78.0 40.35 78.4 (0.4↑)

40.44

1463
×0.75 77.6 22.71 78.2 (0.6↑) 824.3
×0.5 76.7 10.11 77.6 (0.9↑) 347.6
×0.25 74.0 2.54 75.6 (1.6↑) 92.9

DeepLabv3+
MobileNetv2

×1.0 66.9 4.53 67.9 (1.0↑)

4.58

18.5
×0.75 63.3 2.57 67.0 (3.7↑) 12.2
×0.5 58.6 1.16 64.3 (5.7↑) 5.7
×0.35 56.1 0.57 61.1 (5.0↑) 3.3

Does inplace knowledge distillation work? We compare the mIoUs
of training the slimmable model with and without stepwise down-
ward distillation in Table 3. For the smallest subnetwork with
width×0.25, the mIoUs consistently improve with distillation under
all combinations of loss functions. With the distillation strategy
proposed by our work, mIoUs improve on all subnetworks, and
among them, the smallest subnetwork with width×0.25 has the
largest increase (0.8%) from 73.6% to 74.4%.

Which is the best teacher for small submodels? We train our
slimmable model with soft targets predicted by different models
as teachers in knowledge distillation. For the student subnetwork
S(𝜃𝑤𝑛

), ’prev’, ’largest’, ’mean’ indicates that the soft target is the
predicted probability 𝑝𝑛+1 of the last larger subnetwork S(𝜃𝑤𝑛+1 ),
𝑝𝑁 of the largest subnetwork S(𝜃𝑤𝑁

) [56] and the average of all
the predictions 1

𝑁−𝑛
∑𝑁
𝑗=𝑛+1 𝑝

𝑗 by the subnetwork larger than the
current model S(𝜃𝑤𝑛+1 ), ...,S(𝜃𝑤𝑁

), respectively. Different from
the setting of ’mean’, ’larger’ represents using the average loss of all
the larger submodels’ distillation. The mIoU of our slimmable model
under different teacher settings are reported in Table 4. Note that
all the models are trained with the sum of the three losses proposed.
Our ’prev’ setting, the stepwise downward distillation, outperform
others by higher mIoU 74.4% and 77.37% on width ×0.25 and ×0.5.
Using the average loss of all larger submodels results in better
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mIoUs on the larger submodels with width ×0.75 and ×1.0, but even
lower mIoU than models trained without distillation on width ×0.25
and ×0.5. The results are consistent with the phenomenon that
student network’s performance degrades when the gap between
student and teacher is too large [36].

Table 3: Ablation of knowledge distillation (KD) with differ-
ent loss function by Slim-SFNet-ResNet50 on Cityscapes val.

KD GT Soft Target mIoU (%)
L𝑠𝑒𝑔 L𝑏 L𝑔 L𝑠𝑒𝑔 L𝑏 L𝑔 ×0.25 ×0.5 ×0.75 ×1.0

w/o

! 71.82 75.97 76.92 77.90
! ! 73.08 76.34 77.12 78.14
! ! 72.49 76.47 77.82 78.35
! ! ! 73.63 76.92 77.77 78.26

w

! ! 71.94 75.86 76.64 77.55
! ! ! ! 73.12 76.04 77.21 78.21
! ! ! ! 72.94 76.16 77.41 78.37
! ! ! ! ! ! 74.40 77.37 77.87 78.43

Table 4: Ablation of different knowledge distillation (KD)
strategies with Slim-SFNet-ResNet50 on Cityscapes val. Bold
numbers and italic numbers indicate the best and second
best results.

KD Teacher Loss mIoU (%)
×0.25 ×0.5 ×0.75 ×1.0

w/o - L𝐶𝐸/𝐵𝐶𝐸 (𝑝𝑛, 𝑦) 73.63 76.92 77.77 78.26

w

prev L𝐾𝐷 (𝑝𝑛, 𝑝𝑛+1) 74.40 77.37 77.87 78.43
largest L𝐾𝐷 (𝑝𝑛, 𝑝𝑁 ) 73.64 76.72 77.04 78.38
mean L𝐾𝐷 (𝑝𝑛, 1

𝑁−𝑛
∑𝑁
𝑗=𝑛+1 𝑝

𝑗 ) 73.24 76.25 77.53 77.85
larger 1

𝑁−𝑛
∑𝑁
𝑗=𝑛+1 L𝐾𝐷 (𝑝𝑛, 𝑝 𝑗 ) 73.25 75.87 78.02 78.61

Boundary Supervision. As shown in Table 3, with boundary
detection loss L𝑏 , the mIoUs on all widths are improved, especially
for the smallest submodels, with 1.2% increase from 71.94% to 73.12%.
For slimmable models trained without L𝑏 but with the boundary
guided segmentation loss L𝑔 , we use the binary boundary ground
truth label as a mask to generate a masked probability map 𝑝𝑚𝑠 .
The boundary guided segmentation loss with ground truth labels
also helps on improving the mIoUs on all width. With all the losses
together, we get the best performance on all the submodels.

To demonstrate the improvements on semantic borders, we il-
lustrate the histogram of the error pixels in Figure 3. It shows the
statistics of error pixels numbers and their Euclidean distances to
the nearest boundaries on 500 Cityscapes val images. Overall, the
improved pixels are mainly distributed on the semantic borders. The
improvement number of pixels within the range of 5 pixels along
the borders accounts for about 50% of the total. Some qualitative
results on Cityscapes val are shown in Figure 4. With the bound-
ary supervision, the predicted segmentation maps of each width

model are more consistent, especially on the boundary regions.
Segmentation results for some interior regions are also improved.
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Figure 3: Comparison of the distribution of error pixels be-
tween slimmable models trained with and without boundary
supervision (BS) on Cityscapes val. Themodel with boundary
supervision has less error predictions on the boundary.
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Figure 4: Visual comparison of our boundary supervision (BS)
on Cityscapes val, in terms of errors in predictions, where
correctly predicted pixels are shown as black background
while wrongly predicted pixels are colored with their ground
truth label color codes. Submodels with boundary supervi-
sion perform better on small objects and semantic borders.

4.4 Comparisons with Real-time Models
We compare our method with other existing state-of-the-art real-
time methods on Cityscapes and CamVid.

Results on Cityscapes. We present the mIoU and inference
speed of our slimmable SFNet-ResNet50 and SFNet-ResNet18 (both
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backbones are pretrained on ImageNet) and other real-time segmen-
tation methods in Table 5. Our Slim-SFNet-ResNet50 achieves result
(77.3%) with FPS 23.8. With ResNet18 as backbone, our method
achieves 74.3% mIoU with 51.4 FPS.

Table 5: Comparison with state-of-the-art on Cityscapes val.
‡indicates the model is not pretrained on ImageNet.

Method Resolution Backbone mIoU FLOPs FPS Param

BiSeNetV1[54] 768×1536 Xception39 69.0 14.8 105.8 5.8
BiSeNetV1[54] 768×1536 ResNet18 74.8 55.3 65.5 49
CAS‡[60] 768×1536 Searched 71.6 - 108 -
GAS‡[32] 767×1537 Searched 72.4 - 163.9 -
DF1-Seg[30] 1024×2048 DFNetv1 74.1 - 106.4 -
DF2-Seg1[30] 1024×2048 DFNetv2 75.9 - 67.2 -
DF2-Seg2[30] 1024×2048 DFNetv2 76.9 - 56.3 -
SFNet[29] 1024×2048 ResNet18 78.7 247 18 12.9
BiSeNetV2‡[53] 1024×2048 None 73.4 21.3 - -
BiSeNetV2-L‡[53] 512×1024 None 75.8 118.5 47.3 4.6
FasterSeg‡[3] 1024×2048 Searched 73.1 28.2 108.4 4.4
STDC2-Seg75[10] 768×1536 STDC2 77.0 54.9 97† 16.1
MSFNet[13] 1024×2048 ResNet18 77.2 96.8 41 -
CABiNet[52] 1024×2048 MBNetv3-s 76.6 12 76.5 2.64
CABiNet[52] 1024×2048 ResNet18 76.7 66.4 54.5 9.2
DDRNet-Seg[17] 1024×2048 DDRNet-23 79.5 143.1 37.1 20.1

Slim-SFNet
×[0.25, 0.5, 0.75, 1.0]

(Ours)
1024×2048 ResNet50

74.4 39.4 46.2 2.0
77.3 153.9 23.8 7.8
77.8 343.4 13.2 17.6
78.4 607.9 9.0 31.2

Slim-SFNet
×[0.25, 0.5, 0.75, 1.0]

(Ours)
1024×2048 ResNet18

70.4 15.7 74.9 0.8
74.3 61.5 51.4 3.2
76.7 137.4 30.8 7.2
77.9 243.6 21.8 12.9

Results on CamVid. Since the inference speed of different
models is measured under different conditions, we list the cor-
responding GPU type. Table 6 shows the comparison results on
CamVid between our method and SoTA methods. Our network
achieves competitive trade-off between performance and speed by
80.1% (72.5% without ImageNet pretraining) mIoU with 55.7 FPS,
which outperforms the original independently trained SFNet.

Discussion. Our work tackles the design of efficient and ad-
justable segmentation methods. In contrast to the SoTA real-time
semantic segmentation methods, the performance of our methods
do not rely on well-crafted compact network architectures. The
experimental results demonstrated that our method can be directly
applied to the mainstream segmentation frameworks and turn the
fixed-computation models into adjustable ones. In this work, we
use globally consistent width multipliers, but the optimal width
of can be different for each layer, so we believe that the accuracy-
efficiency tradeoff still has room for improvement. Furthermore,
combining with image content, input resolution and depth of the
network, the dynamic inference can be further explored.

5 CONCLUSION
In this paper, we propose a general slimmable semantic segmenta-
tion method, which enables adjustable accuracy-efficiency tradeoff

Table 6: Comparison with state-of-the-art on CamVid test
with image size 720×960. IM and CS represent using extra
data, ImageNet and Cityscapes, for pretraining, respectively.
†indicates the FPS is measured with TensorRT acceleration.

Method Extra Backbone mIoU FPS GPU

BiSeNetV1[54] IM Xception39 65.6 175 GTX1080Ti
BiSeNetV1[54] IM ResNet18 68.7 116.3 GTX1080Ti
CAS[60] None Searched 71.2 169 TitanXp
GAS[32] None Searched 72.8 153.1 TitanXp
SFNet[29] IM ResNet18 73.8 36 GTX1080Ti
MSFNet[13] None None 75.4 91 GTX2080Ti
STDC1-Seg[10] IM STDC1 73.0 198† GTX1080Ti
STDC2-Seg[10] IM STDC2 73.9 152† GTX1080Ti
BiSeNetV2[53] CS None 76.7 124.5 GTX1080Ti
BiSeNetV2-L[53] CS None 78.5 32.7 GTX1080Ti
DDRNet-Seg[17] CS DDRNet-23 80.6 94 GTX2080Ti

Slim-SFNet
×[0.25, 0.5, 0.75, 1.0]

(Ours)
CS ResNet50

78.0 57.1

GTX2080Ti80.6 47.9
81.6 31.7
81.7 21.8

Slim-SFNet
×[0.25, 0.5, 0.75, 1.0]

(Ours)
IM ResNet18

71.0 102.8

GTX2080Ti73.6 98
74.8 72.6
75.2 55.7

Slim-SFNet
×[0.25, 0.5, 0.75, 1.0]

(Ours)
CS ResNet18

75.0 102.8

GTX2080Ti77.9 98
79.5 72.6
80.1 55.7

through a width-swicthable segmentation network. We demon-
strate the effectiveness of stepwise downward distillation on im-
proving the performance of smaller subnetworks, and with less
amount of features saved during training compared with other
distillation strategies. Based on the observation of the difference
between the predictions of each subnetwork, we introduce bound-
ary supervision on low-level features of the network and propose a
boundary guided loss to further improve the segmentation results
of pixels along semantic borders. We demonstrate the effective-
ness of the proposed method through extensive experiments with
several different mainstream semantic segmentation networks on
the Cityscapes and CamVid. Our proposed method improves the
accuracy of the smaller submodels without great accuracy drops
on large submodels.
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A SLIMMABLE SEGMENTATION
FRAMEWORK

In this section, we present specific experimental results to illustrate
why we choose to slim the entire segmentation framework instead
of just a part of it. In addition to computational considerations, it is
also because the use of more complex decoders cannot significantly
improve the accuracy of submodels.

A.1 Globally Slimmable v.s. Partially Slimmable
Yu et al. [57] has applied their slimmable ResNet50 backbone on
instance segmentation task, but except for the slimmable ResNet50,
the other parts of the Mask-RCNN (i.e. the lateral layers and the
decoder) are non-slimmable. While in our work, we set the en-
tire network to be adjustable in width, even the for the Pyramid
Pooling Module, the lateral layers and the decoder. We report the
mIoU and FLOPs of the globally slimmable models, the par-
tially slimmable models (with only the slimmable backbone), and
their independent counterparts in Table 7. Two kinds of structures,
including SFNet [29] and Deeplabv3+ [2], both with slimmable
ResNet50 [57] pretrained on ImageNet as backbone, are tested. For
the partially slimmable models, the number of channels in non-
slimmable parts is fixed and the same as that of subnetwork with
width ×1.0 in globally slimmable model. As illustrated in Figure
5, the computation reduction brought by seldom slimming the
backbone is relatively small. For partially slimmable models, the
mIoU gap between submodels of different width is smaller than
the gap between globally slimmable submodels, and the range of
FLOPs is narrower, due to the fixed non-slimmable parts in partially
slimmable submodels. At the same time, compared with partially
slimmable models, globally slimmable models have more obvious
advantages onmIoU than corresponding independent models. Since
the number of parameters of the non-backbone part in SFNet ac-
counts for higher percentage than that in DeepLabv3 (shown in
Table 1 of the main paper), the difference on mIoU and FLOPs
between globally and partially slimmable models is also larger.

Overall, comparing the mIoU-FLOPs curves of the globally and
partially slimmablemodel, the globally slimmablemodel can achieve
higher mIoU than the partially slimmable model with the same
amount of computation, especially for smaller submodels. There-
fore, we believe that globally slimmable semantic segmentation
network leads to a better accuracy-efficiency tradeoff.

B BOUNDARY SUPERVISION
In this section, we conduct more experiments about the boundary
supervision and show some visualization results of features and
predicted segmentation maps.

B.1 Boundary Groundtruth
Boundary segmentation ground truth labels are generated based on
the semantic segmentation ground truth labels, since we only focus
on the boundaries between different semantic categories rather than
the obvious image edges inside the regions with the same semantic
category. In the experiments presented in the main paper, we set
the radius of the boundary region to 3 pixels. Here we compare the
mIoUs of the Slim-SFNet-ResNet50 models using different boundary
ground truth labels in Table 8. When radius equals to 3 pixels, the
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Figure 5: FLOPs-mIoU spectrum of globally and partially
slimmable networks on Cityscapes val.

mIoU of each subnetwork is the optimal. Smaller boundary regions
benefit to exploit hard samples, but when the number of boundary
samples is too small, it is not conducive to the network to fully
learn the characteristics of boundary samples.

B.2 Input of the Boundary Detection Head
The input of our boundary detection head is the low-level features
extracted by the first few layers of the backbone networks. We re-
port themIoUs of models trainedwith different low-level features as
boundary detection input. As shown in Table 10, ‘conv1’, ‘conv2_x’,
‘conv3_x’ represent the first three stages of ResNet50 [15], where
‘x’ indicates the numbers of the residual blocks. According to Table
9, slimmable models trained with boundary supervision, including
the boundary detection head and the loss functions L𝑏 and L𝑔 ,
outperform the slimmable model without boundary supervision.
Using the features output by layer ‘conv2_3’ of ResNet50 lead to
higher overall mIoU.

The layer ‘conv1’ contains only one convolutional layer. Al-
though the extracted features can identify image edges, what we
need is boundaries between different semantic categories, which



MM ’22, October 10–14, 2022, Lisboa,Portugal Danna Xue et al.

Table 7: Comparison between globally slimmable models and partially slimmable models on Cityscapes val. *Note that both
the independent and slimmable models are trained with the sum of the three losses in Equation (5) (in the main paper) for fair
comparison.

Network Slimmable Part Width Independent* Slimmable* GFLOPsmIoU (%) Param (M) mIoU (%) Param (M)

SFNet
ResNet50

Backbone
(Partially slimmable)

×1.0 78.3 31.2 78.3 (0.0↑)

31.3

608.0
×0.75 77.8 20.2 78.0 (0.2↑) 529.9
×0.5 76.4 12.1 76.8 (0.4↑) 472.6
×0.25 75.4 6.9 75.7 (0.3↑) 436.0

Backbone+PPM+Decoder
(Globally slimmable)

×1.0 78.3 31.3 78.4 (0.1↑)

31.3

607.9
×0.75 77.3 17.6 77.9 (0.6↑) 343.4
×0.5 76.3 7.8 77.4 (1.1↑) 153.9
×0.25 73.2 2.0 74.4 (1.2↑) 39.4

DeepLabv3+
ResNet50

Backbone
(Partially slimmable)

×1.0 78.3 40.4 78.4 (0.1↑)

40.4

1462.8
×0.75 78.2 26.3 78.3 (0.1↑) 993.7
×0.5 77.1 15.1 77.4 (0.3↑) 623.7
×0.25 75.5 6.9 75.8 (0.3↑) 352.7

Backbone+PPM+Decoder
(Globally slimmable)

×1.0 78.0 40.4 78.4 (0.4↑)

40.4

1462.8
×0.75 77.6 22.7 78.2 (0.6↑) 824.3
×0.5 76.7 10.1 77.6 (0.9↑) 347.6
×0.25 74.0 2.5 75.6 (1.6↑) 92.9

Table 8: mIoUs of slimmable models trained with different
boundary detection groundtruth.

Radius
(pixels)

mIoU (%)
×0.25 ×0.5 ×0.75 ×1.0

1 74.10 76.63 77.59 77.91
3 74.40 77.37 77.86 78.43
5 73.63 76.02 76.93 77.38

Table 9: mIoUs slimmable models trained with different low-
level features as the input of boundary detection head.

Boundary
Head

Input
Features

mIoU (%)
×0.25 ×0.5 ×0.75 ×1.0 Ave

w/o - 71.94 75.86 76.64 77.55 75.50

w
conv1 73.56 76.99 77.54 78.18 76.57
conv2_3 74.40 77.37 77.86 78.43 77.02
conv3_4 74.12 76.72 77.57 78.32 76.68

contains semantic information to a certain extent. Moreover, as
our main task is to perform semantic segmentation, in addition
to exploiting the boundary pixels, the context information of the
object itself is more important. If edge constraint is added to the
feature output by the layer ‘conv1’, it will have a greater impact on
subsequent features, so we add the boundary supervision on the
deeper features. The features output by the layer ‘conv3_4’ have
been processed by three stages of convolutions, and contain some
semantic information, so the overall mIoU outperforms the model
using ‘conv1’. However, since the resolution of the features output

by the layer ‘conv3_4’ are down-sampled by 8 times compared to
the original image, boundaries and details have been lost, so using
the output features of the layer ‘conv3_4’ as input for boundary
detection is worse than layer ‘conv2_3’.

Table 10: Architectures of ResNet50 [15]. Down-sampling is
performed by conv3_1, conv4_1, and conv5_1 with a stride
of 2. The input image size is 3×1024×2048.

Layer Name Output Size
(C×H×W) ResNet50

conv1 64×512×1024 7×7, stride 2

conv2_x 256×256×512 3×3 max pool, stride 2
1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3

conv3_x 512×128×256

1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 4

conv4_x 1024×64×128

1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 6

conv5_x 2048×32×64

1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 3
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B.3 More Visualization Results
To show the effectiveness of the boundary supervision, we present
more visualization results of both features and segmentation re-
sults on Cityscapes val [5]. As shown in Figure 6, the features in
the regions near the boundary and the textured details of the ob-
jects, such as the head of the truck, are enhanced with boundary
supervision, so the corresponding segmentation results in these
areas have fewer errors. In Figure 7, we compare the error maps
of segmentation predictions between slimmable models with and
without boundary supervision. As we can see, not only the seman-
tic boundaries are improved with boundary supervision, but also
the thin small objects, such as the pole, fence, traffic sign, have
better results especially for small submodels. The gaps between the
predictions of submodels with different width are narrowed with
boundary supervision.
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Figure 6: Visual comparison of our boundary supervision on Cityscapes val, in terms of the average feature maps of the output
of layer ’conv2_3’ in ResNet50. Column 1 and 3 are the colored semantic segmentation maps and average features predicted by
slimmable submodels without boundary supervision. The brighter color indicates the larger number of features. Column 2 and
4 are the results with boundary supervision. With boundary supervision, the features in boundary and textured regions are
enhanced, which results in better segmentation results of these area.
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Figure 7: Visual comparison of our boundary supervision on Cityscapes val, in terms of errors in predictions, where correctly
predicted pixels are shown as black background while wrongly predicted pixels are colored with their ground truth labels
color codes. Models with boundary supervision performs better on small objects, such as poles and traffic signs, and semantic
borders. Please zoom in for better viewing.
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