
BURST PERCEPTION-DISTORTION TRADEOFF: ANALYSIS AND EVALUATION

Danna Xue⋆†‡ Luis Herranz†‡ Javier Vazquez Corral†‡ Yanning Zhang⋆

⋆ School of Computer Science, Northwestern Polytechnical University, Xi’an, China
† Computer Vision Center, Barcelona, Spain

‡ Department of Computer Science, Universitat Autònoma de Barcelona, Barcelona, Spain

ABSTRACT

Burst image restoration attempts to effectively utilize the
complementary cues appearing in sequential images to pro-
duce a high-quality image. Most current methods use all the
available images to obtain the reconstructed image. However,
using more images for burst restoration is not always the best
option regarding reconstruction quality and efficiency, as the
images acquired by handheld imaging devices suffer from
degradation and misalignment caused by the camera noise
and shake. In this paper, we extend the perception-distortion
tradeoff theory by introducing multiple-frame information.
We propose the area of the unattainable region as a new
metric for perception-distortion tradeoff evaluation and com-
parison. Based on this metric, we analyse the performance
of burst restoration from the perspective of the perception-
distortion tradeoff under both aligned bursts and misaligned
bursts situations. Our analysis reveals the importance of
inter-frame alignment for burst restoration and shows that the
optimal burst length for the restoration model depends both
on the degree of degradation and misalignment.

Index Terms— burst image restoration, perception-
distortion tradeoff, inter-frame alignment

1. INTRODUCTION

Image restoration aims, given an image that has experimented
some degradation process, to restore it to obtain the original
image. This problem has been widely studied in the literature
for many years and relates to several sub-problems, such as
denoising, super-resolution, deblurring, etc.

Recently, the trend has moved towards burst image
restoration. Burst is a sequence of images captured in rapid
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Fig. 1: Single Image Restoration versus Burst Restoration.
Burst introduces the problem of misalignment between im-
ages in the burst. See details in Section 2.

succession. The main reason for this shift is the current ubiq-
uity of smartphones, since these devices can easily acquire
this sequential data and process it to produce better-quality
images. Burst image restoration has the advantage that mul-
tiple frames provide complementary information to the refer-
ence one, leading to higher resolution [1, 2, 3, 4, 5, 6], lower
noise level [7, 5], and higher dynamic range [8], while also
introducing uncertainty caused by motion or camera shake
[9]. This misalignment problem introduced by multiple im-
ages may lead to restored images with ghost artefacts, and
blurry [10]. Recent works [3, 5] explicitly align burst images
by estimating optical flows [11], or implicitly by deformable
convolutions [2, 4, 6]. In practice, even after these alignment
methods, two images are rarely perfectly aligned due to the
degradation and the appearance of artefacts.

The evaluation of image restoration is generally car-
ried out from two aspects: the perceptual quality and the
distortion. Blau et al. [12] first characterized the Perception-
Distortion (P-D) Tradeoff in single image restoration. More
specifically, they proved that distortion and perceptual quality
are at odds with each other so that no image restoration algo-
rithm can optimize the two indicators to the best at the same
time in practice. The P-D curve comprehensively shows the
upper bound and range of continuous changes of two types of
evaluation criteria. The generative-adversarial-nets (GANs)
provide a principled way to approach the P-D bound by
varying the hyperparameter between distortion loss and per-



ception loss, thus producing estimators along the P-D curve,
and therefore obtaining the P-D tradeoff curve. In [13, 14]
authors prove that the P-D curve can be acquired by linear
interpolation between two models, which greatly simplifies
the steps to obtain the P-D curve. Similar tradeoffs are also
proved existing in classification [15] and image compression
[16]. However, these works only focus on single-image tasks,
and the perception-distortion tradeoff in the case of multiple
images has not been studied yet.

Our work studies the perception-distortion tradeoff from
multiple images, thus generalizing the case of a single image.
In particular, we focus on the case of burst image restoration
with relatively stable noise and camera shaking. Through the
analysis, we found that using more images does not always
lead to better reconstruction quality due to the misalignment
between each image. The optimal burst length (i.e. the num-
ber of images in a burst) for restoration depends on the shake
and noise levels.

In summary, the contribution of this paper is threefold:

• We propose the Burst Perception-Distortion Tradeoff
by introducing multiple-frame information.

• We propose AUR as a new method for multi-frame
restoration evaluation, which comprehensively reflects
the perception and distortion quality of the restored
image.

• We analyse the Burst P-D tradeoff under the influence
of image noise and shake, and found the effect of inter-
frame misalignment on burst restoration.

2. THE PERCEPTION-DISTORTION TRADEOFF

2.1. Single image perception-distortion tradeoff

The original P-D tradeoff formulation considers the case of
a single degraded image y, which is observed according to
some conditional distribution pY |X , where x ∼ pX would be
the underlying true original image. This formulation assumes
that the degradation is not reversible, i.e. cannot be estimated
from y without error, which is typically the case in image
restoration. Thus, given the degraded image y, a restored im-
age x̂ is estimated according to the conditional distribution
pX̂|Y . The problem setting is described in Fig. 1 (top).

Two performance metrics are defined: distortion E[∆(x̂, x)]
that measures how similar the restored image is to the ac-
tual original image, and perception (i.e. perceptual quality)
d(pX̂ , pX) that measures the divergence between the distri-
bution of reconstructed images pX̂ and the distribution of
natural images pX . The perception-distortion function of the
restoration task is given by

P (D) = minpX̂|Y
d(pX , pX̂) s.t. E[∆(X, X̂)] ≤ D. (1)

The main finding in this formulation is that the region un-
der the P-D function is not attainable, and the P-D function
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Fig. 2: Illustration of the Area of the Unattainable Region
(AUR) within the ranges [Pmin, Pmax] and [Dmin, Dmax].
The P-D curve is extended when derivative is 0 or inf (from
the light blue curve to dark blue curve) to avoid the ill effects
caused by model training.

represents points where an improvement of one metric im-
plies a worsening of the other.

2.2. Burst perception-distortion tradeoff

In our case, we generalize the previous formulation to the
case in which a burst of n degraded images {y1, y2, ..., yn}
is observed from the same underlying image x, each yi be-
ing a sample from the distribution pYi|X = pY |X , since we
assume them independent and identically distributed. Criti-
cally for our analysis, there exists camera shake that may re-
sult in small misalignments between the images. Then, given
the sequence of degraded images {y1, y2, ..., yn}, a restora-
tion algorithm estimates a restored image x̂ according to the
conditional distribution pX̂|Y1,Y2,...,Yn

(see Fig. 1 (bottom)).
The burst perception-distortion function is thus defined as

P (D) = minpX̂|Y1,Y2,...,Yn
d(pX , pX̂)

s.t. E[∆(X, X̂)] ≤ D.
(2)

Note that this formulation generalizes the single image P-D
function and introduces the new misalignment problem be-
tween images in the burst.

2.3. Area of the unattainable region

While the P-D plane and P-D functions are the main tools to
compare the performance of restoration algorithms, we pro-
pose the area of the unattainable region (AUR), that is, the
area under the P-D function as metric for more convenient
comparison (see Fig. 2). This metric summarizes the perfor-
mance in one single value. While AUR can be applied to the
single image case, it is particularly convenient to study the
influence of factors, such as burst length, in the burst case.

Since the AUR could be infinite, we define it within a
range of perception and distortion values of interest [Pmin, Pmax]
and [Dmin, Dmax], respectively, as

AUR =

∫ Dmax

Dmin

P̂ (D)dx (3)

where P̂ (D) is P (D) clamped to the range [Pmin, Pmax].



3. EXPERIMENTS

For the experiments, we focus on the burst super-resolution
task, which is a common and representative problem with
three degradation factors: noise, (camera) shake and down-
sampling. In this case, the ith observed image in a burst with
n images is related to the (unknown) original image via the
following relation

yi [u] = x [αu+ νi] + ϵi [u] , (4)

where u represents the coordinates in the low resolution grid,
in contrast to the high resolution grid u′ in which x [u′] is
represented. α is the subsampling factor, vi represents the
displacement due to camera shake, and ϵi represents the cam-
era noise. We assume they are independent and identically
distributed. The single image case corresponds to n = 1,
which implies no misalignment, i.e. y [u] = x [αu] + ϵ [u].

Dataset. Describable Textures Dataset (DTD) [17] is a nat-
ural texture database consisting of 5640 images with 47
categories (120 images for each). Image sizes range between
300 × 300 and 640 × 640. The data is split into three equal
parts for training, validation, and testing, with 40 images per
class, for each split.

We generate a synthetic burst super-resolution dataset
based on the DTD dataset. Each image is centre-cropped
to 128 × 128 to get the high-resolution ground truth (HR),
and the LR image is obtained by bilinear interpolation with
a scaling factor of ×4. Following the burst synthesizing pro-
cess provided by [9], in each burst, we randomly add Poisson
noise (shot noise) np ∼ P (λp) and Gaussian noise (readout
noise) ng ∼ N(0, σg) to each image. The first image in each
burst is the reference frame aligned with HR. For the rest im-
ages in the burst, we add random translation on both vertical
and horizontal axis ∆xs ∼ N(0, σs),∆ys ∼ N(0, σs).

Training details. We look at burst super-resolution meth-
ods to analyse the quality of the reconstructed image. In
order to navigate the Perception-Distortion Tradeoff, we con-
sider the ESRGAN [18] network trained with two stages,
where the first stage is distortion-oriented and the second is
perception-oriented. We linear interpolate the parameters of
these two models by θinterp = (1 − α)θD + αθP to obtain
a continuous P-D curve. We repeat this training for each
different noise and shake levels given in Table 1.

More specifically, we first train the distortion-oriented
model only with L1 loss. The learning rate is initialized as
2× 10−4 and decayed by a factor of 2 every 50 epochs. Then
this model is employed as initialization for the generator. We
fine-tune the generator with adversarial loss and perceptual
loss to optimize the perceptual quality. The learning rate is
set to 1 × 10−4 and halved at every 25 epochs. Our model
contains 23 residual blocks, and all the images in a burst are
concatenated as input. We optimize using Adam with β1 of

Item Value
Gaussian Noise (σg) [0, 10, 20, 30, 40]
Poisson Noise (λp) [0, 1, 2, 3, 4]

Shake (σs) [0, 1, 2, 3, 4] (pixel)
Burst Length (n) [1, 5, 10, 20, 30, 40, 50]

Table 1: Experimental settings for degraded burst images.
For σs = 0, only the single-frame models are trained.

0.9 and β2 of 0.99, batch size of 16. We train and test the
models using PyTorch on an NVIDIA GeForce 3090Ti GPU.

4. ANALYSIS AND EVALUATION

Bursts are generally collected in a very short period. There-
fore, the content and imaging conditions of a burst are ba-
sically the same. The main differences between each frame
are degrees of noise and misalignment. Since image noise is
unavoidable in the imaging process, we analyse two common
cases: when all images in a burst are perfectly aligned and
when the images are not aligned.

For evaluation, we measure perceptual quality using the
no-reference metrics NIQE [19] and BRISQUE [20], and for
distortion, we measure RMSE. We calculate AUR of NIQE-
RMSE and BRISQUE-RMSE both with [Dmin, Dmax] =
[0, 0.3], [Pmin, Pmax] = [0, 150].

4.1. Perfectly Aligned Bursts

This setting covers two cases: (1) The burst is captured in
a stable condition, i.e. there is no shake or motion during
imaging. (2) The accurate motion parameters or flow between
frames can be measured by equipment or estimated by algo-
rithms. In this case, we only consider the impact of noise on
the quality of restoration results.

Foremost, the P-D curves in Fig. 3 prove that the P-D
tradeoff still exists in burst restoration. As the noise level of
the input image increases, for both Gaussian noise and Pois-
son noise, the P-D curve lies further from the origin, which
indicates that both the perceptual quality of the restoration
image and distortion are getting worse (See Fig. 3 column 1-
2). At a certain noise level, perception and distortion improve
as the input burst length increases. When the burst length
reaches a certain number, the benefit of using more images
for processing decreases, since most information has already
been restored. As illustrated in Fig. 3 column 3, the two-
frame P-D curve shows a wide margin over the single-frame
curve, but the gap between 10 and 100 images is quite nar-
row. The AUR value (see Fig. 3 column 4) also indicates the
same tendency, proving the AUR curve captures well the P-
D plane. The analysis of a perfectly aligned burst proves the
importance of alignment for multi-frame processing. When a
burst is well aligned, the more images the input has, the higher
the image quality obtained for both perception and fidelity.
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Fig. 3: P-D curves of perfectly aligned bursts. Columns 1-3 compare the P-D curves with different levels of Gaussian noise,
Poisson noise, and burst length, respectively. Column 4 shows the AUR. When images are perfectly aligned, and the noise level
in each image is lower than the signal itself, using more images for burst restoration leads to better restoration quality. Note
that the black dash line in the P-D planes indicates the modified P-D curves.
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Fig. 4: P-D curves of misaligned bursts. Column 1 compares the P-D curves with different levels of shake. Column 2,3,4 shows
the AUR under different levels of noise and shake. When the burst is imperfectly aligned, an optimal burst length for restoration
exists, depending on the noise level and displacement level.

4.2. Misaligned Bursts

For bursts taken by a handheld camera, shake is almost an un-
avoidable problem. Misaligned bursts result from two possi-
ble conditions: (1) Direct restoration without any alignment.
(2) Misalignment resulting from inaccurate motion or flow es-
timation. In our case, we consider the impact of both shake
and noise. Here we assume that the entire burst is acquired
in a very short period, so only the random shake is consid-
ered. Let us also note that this case can also be understood as
a proxy for the error of alignment methods.

As shown in Fig. 4, as the burst length increases, the
restoration results gradually get better at first, and after reach-
ing the optimum quality at a certain burst length, the image
quality gradually gets worse. When the displacement be-
tween images is relatively small, complementary information
between different images helps recover more image details.
However, when the displacement between images is too large,
using more images to restore will worsen the quality. As il-
lustrated in Fig. 4 column 2, when λp = 1, σg = 10, i.e.

the AUR curves for the first image column, 20 is the optimal
length for burst with shake σs = 1, 2, 3. As the noise level in-
creases (column 3, λp = 3, σg = 30), the larger the length of
the input burst is, the better the quality of the restored image
is. Therefore, the optimal burst length is determined by both
the shake and the noise level.

5. CONCLUSION

In this paper, we extend the theory of perception-distortion
tradeoff to multiple images, in particular to bursts. We anal-
yse the impact of noise and shake on multi-frame restoration
from the perspective of the P-D tradeoff and determine the
importance of inter-frame alignment for burst restoration. On
this basis, we propose a new metric for evaluating and com-
paring P-D curves. We believe our work provides reference
for the design of multi-frame restoration methods. In the case
of estimable image noise and camera shake, the analysis re-
sults can also be used as a reference for selecting the optimal
burst length.
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