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Figure 1. We show that even Ground Truth (GT) images in existing SR datasets [6, 33] can show relatively poor quality. As a result, image
metrics tend to favor outputs that more resemble the reference GTs (middle), even when they are perceptually poorer (left side), leading to
contradictory evaluations with human preferences (right side). Please zoom in for better comparisons.

Abstract

While recent advancing image super-resolution (SR) tech-
niques are continually improving the perceptual quality of
their outputs, they can usually fail in quantitative evalu-
ations. This inconsistency leads to a growing distrust in
existing image metrics for SR evaluations. Though im-
age evaluation depends on both the metric and the refer-
ence ground truth (GT), researchers typically do not in-
spect the role of GTs, as they are generally accepted as
‘perfect’ references. However, due to the data being col-
lected in the early years and the ignorance of controlling
other types of distortions, we point out that GTs in exist-
ing SR datasets can exhibit relatively poor quality, which
leads to biased evaluations. Following this observation, in
this paper, we are interested in the following questions: Are
GT images in existing SR datasets 100% trustworthy for
model evaluations? How does GT quality affect this evalua-
tion? And how to make fair evaluations if there exist imper-
fect GTs? To answer these questions, this paper presents
two main contributions. First, by systematically analyz-
ing seven state-of-the-art SR models across three real-world
SR datasets, we show that SR performances can be consis-
tently affected across models by low-quality GTs, and mod-
els can perform quite differently when GT quality is con-
trolled. Second, we propose a novel perceptual quality met-
ric, Relative Quality Index (RQI), that measures the relative

quality discrepancy of image pairs, thus issuing the biased
evaluations caused by unreliable GTs. Our proposed model
achieves significantly better consistency with human opin-
ions. We expect our work to provide insights for the SR com-
munity on how future datasets, models, and metrics should
be developed.

1. Motivation

Image super-resolution aims at reconstructing a high-
resolution (HR) image from a low-resolution (LR) obser-
vation. The advance of recent image processing techniques
[19, 20, 31, 34, 40, 47] has enabled realistic SR models to
not only super-resolve images but also restore other types
of degradations in the real world, such as noise, blurriness,
and compression [31, 40]. However, recent studies have
still found an inconsistency between human perceptual and
model quantitative evaluations, i.e. models that achieve bet-
ter visual quality can easily fail under existing evaluation
metrics such as PSNR, SSIM, and LPIPS [16, 30, 34]. As a
result, a growing distrust in existing image metrics emerges,
and researchers have to conduct self-organized user studies
[30, 34] or adopt varying image metrics [35, 37] to demon-
strate their performances. In this paper, aside from ‘blam-
ing’ the metrics, we aim to investigate and rethink the issue,
so that a fair understanding of the SR evaluations can be
reached and further justifications can be explored.
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Given an output image IHR from a SR model, the eval-
uation of IHR can be generally measured by:

Q = D(IHR, IGT ), (1)

where IGT is the GT image served as reference, and D(·)
can be any similarity metric such as PSNR and LPIPS.
Thus, the evaluation results depend both on the choice of
D and the quality of IGT . However, while a variety of im-
age metrics are studied, few have investigated the roles of
GTs during evaluation. Thus, it remains to ask: are GTs re-
ally 100% trustworthy? Or are image metrics, not the only
one responsible for the growing inconsistency between per-
ceptual and quantitative evaluations?

In Figure 1, we show GT images (center) from two
SR datasets RealSR [6] and DRealSR [33]. These GTs
show relatively poor quality, due to the device limita-
tion —images were captured several years ago— or the
lack of careful control over other types of distortions.
Meanwhile, advancing state-of-the-art (SOTA) SR methods
(e.g. diffusion-based models [34, 37]) can remove multiple
degradations and produce finer details, often producing out-
puts (right) that surpass the GT images in perceptual qual-
ity. As a result, when applying an existing similarity met-
ric D(·), the lower-quality outputs from models (left) will
instead show higher similarity to the GT, leading to contra-
dictory evaluations that images presenting superior quality
are performing worse.

This observation motivates us to rethink the current de
facto evaluations in SR. Thus, we investigate how the ex-
istence of unreliable GTs affects the evaluations of current
SR models and how to make fair evaluations with imper-
fect GTs. To do so, we first test seven representative SOTA
SR models on three datasets and evaluate how their per-
formances are affected by the quality of GTs. We observe
an inherent connection between model performances and
GT quality —despite concrete models or evaluation met-
rics, which sheds light on how future models and datasets
should be developed. Second, we propose a simple yet ef-
fective solution to correct the unfairness caused by imper-
fect GTs. Specifically, we propose a relative IQA scheme,
Relative Quality Index (RQI), to measure two arbitrary im-
ages that may have varying quality, instead of treating GT
as the perfect reference. Our newly defined metric outper-
forms existing IQA metrics on both user-based opinions and
public benchmarks.

In summary, the main contributions of this paper include:

• We point out the existence of imperfect GTs in current
widely used SR datasets and then systematically analyze
how GT quality affects model evaluations, demonstrating
the inherent connection between model performance and
GT quality, and providing valuable insights into the future
development of models and datasets.

• We propose a novel perceptual quality metric, RQI, to im-
prove SR evaluations with unreliable GTs. RQI assesses
relative quality discrepancies between image pairs, re-
gardless of their quality levels, addressing the limitations
of poor GTs. Experimental results on both user opinions
and public benchmarks demonstrate its superiority.

2. Related Work

2.1. Image super-resolution
Image super-resolution reconstructs HR images from LR in-
puts, serving as a cornerstone for medical imaging, satellite
analysis, video enhancement, etc. [8–11, 13, 14, 19, 20, 30,
31, 34, 37, 40, 45, 46, 48]. Early approaches [8, 11, 13,
14, 20, 47] operate under the assumption of a predefined
degradation process, such as bicubic downsampling or blur-
ring with a known prior. However, their effectiveness is of-
ten constrained in real-world scenarios where noise or com-
pression artifacts may occur. To handle practical SR, BSR-
GAN [40] and RealESRGAN [31] assume complex degra-
dation in LR images and adversarially train models to re-
move multiple degradations. Transformer-based methods
further improve HR quality by capturing long dependen-
cies between pixels: SwinIR [19] utilizes window attention
in Swin Transformer [22] for global dependencies, while
HAT [9] optimizes hierarchical feature integration. With the
emergence of diffusion techniques [15], diffusion-based SR
models [30, 34, 37] are able to learn an even more powerful
image representation and effectively handle various distor-
tions in LR images.

However, while the perceptual quality of SR outputs
keeps improving, recent research finds a lingering incon-
sistency between perceptual quality and quantitative evalu-
ations of SR models [30, 34, 37]. As a result, either cum-
bersome user studies or varying image metrics are sought
to justify SR model performances. In this paper, we inves-
tigate the issue and propose a solution that better correlates
with human perception.

2.2. Image quality metrics
Image quality metrics are widely used as evaluation crite-
ria for image processing systems. In most cases, the eval-
uations assume GTs are accessible for varying tasks, and
thus, full-reference IQA (FR-IQA) approaches are applied.
These approaches measure the similarity between the target
and GT image to evaluate the performance. Common met-
rics include distortion-based metrics such as PSNR, SSIM
[32] and FSIM [41], and recent perceptual-based metrics
such as LPIPS [44] and DISTS [12]. However, since FR-
IQA assumes references are perfect, only absolute similar-
ity/dissimilarity is measured, thus failing in handling cases
where reference images are perceptually poor.

Noticing the inconsistency between human perception
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and some FR-IQA metrics, recent SR studies also adopt no-
reference IQA (NR-IQA) metrics for evaluations. Widely
applied metrics including Natural Scene Statistics (NSS)
based metrics such as NIQE [24], IL-NIQE [42] and PI
[5], and deep-learning based metrics such as MUSIQ [17],
MANIQA [36] and Clip-IQA [29]. Since these metrics
evaluate image quality without any reference, it is still
doubtful if they make reliable predictions. As a result, cur-
rent SR studies [30, 34, 37] widely conduct user studies to
obtain convincing evaluations.

Note that some IQA datasets (e.g. BAPPS [43] and
PieAPP [26]) employ 2AFC (Two Alternative Forced
Choice) strategy to collect user preferences over a pair
of images, which resembles the proposed relative quality
scheme. However, the logic is still different. In 2AFC,
given a pair of images, users are asked to compare which
one is closer to the reference, in contrast, in RQI, we only
compare which image is relatively better than the other one
without any reference, since we assume references can also
show poor quality. Based on this assumption, we develop a
different training strategy from traditional FR- or NR- met-
rics, showing its superiority over current schemes.

3. How GTs Affect SR Model Evaluations
We focus on the classic ×4 SR task and evaluate seven
representative SOTA SR models, including two GAN-
based models RealESRGAN [31], BSRGAN [40], two
transformer-based models SwinIR [19], HAT [9], and three
difussion-based models StableSR [30], SeeSR [34] and
PASD [37]. We evaluate all the models according to their
official implementations on test sets from 3 real-world SR
datasets, i.e. DIV2K-wild [2], DRealSR [33] and RealSR
[6]. We first employ the NR-IQA metric KonIQ++ [27]
to assess the quality and degradation of GTs from three
datasets, and show their distributions in Figure 2. As can
be seen from Figure 2. a), even for GT images, their qual-
ity can be limited as the highest quality score can reach 100.
The issue is more apparent for DRealSR and RealSR, where
most quality scores fall below 60. For degradation (Fig-
ure 2. b)-d)), while the contrast problem is small, blur and
noise can exist in some images, potentially bringing biases
for evaluations. In Figure 3, we intuitively show GT sam-
ples from three datasets, where they suffer from different
degradation including blur, noise and vague details.

After assessing the quality of GTs in three datasets, we
investigate how their quality affects the evaluations of SR
models. In Figure 4, we gradually discard images with the
lowest GT quality according to the KonIQ++ scores from
all three datasets and evaluate the model performance on
the remaining images. We discard from 0% to 80% images
in total and show average PSNR, SSIM, LPIPS, and DISTS
scores with the amount of discarded images. From Figure
4, we make several observations and discussions:
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(a) Quality score distribution
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(b) Blur level distribution
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(c) Noise level distribution
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(d) Contrast problem distribution
Figure 2. GT Quality and degradation distributions in three SR
datasets. All scores range from 0 to 100, (a): a higher quality
score indicates better quality, (b)-(d): higher degradation scores
indicate larger distortions.

Figure 3. GT samples from RealSR [6], DRealSR [33] and DIV2K
[2] dataset. The images suffer from blur, vague details, and noise
problems respectively. Please zoom in for better view.

1. A challenging image will always be challenging.
We observe that in all the models, similar performance fluc-
tuations occur when the same image is discarded, indicating
that challenging images are always challenging regardless
of SR models. This observation also provides insight into
how to improve future SR models by troubleshooting those
images that are challenging across models.

2. High quality GTs are consistently challenging for
SR models. As low-quality GTs are discarded from eval-
uations, we observe a consistent performance drop for all
the models on all the metrics (decrease in PSNR, SSIM,
and increase in LPIPS and DISTS). We also show in Sup-
plementary Material that this phenomenon is not incidental,
i.e., the consistent drop would not happen if we randomly
discard images. This observation indicates the evaluation of
SR models can be inherently affected by the quality of GTs,
where a high-quality GT can usually lead to lower perfor-
mances. We attribute this to the loss of details and vague
structures in low-quality GTs (see Figure 3), making it easy
to achieve high quantitative evaluations on both distortion
and perception metrics. The phenomenon further indicates
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Figure 4. We show how evaluations of 7 SR models change when low-quality GT are gradually discarded from the testing datasets.

the limitations of current SR models in generating finer de-
tails and producing very high-quality outputs.

3. Different evaluation results can be reached when
GT quality is controlled. We can observe this change
by perceptual metrics LPIPS and especially DISTS, where
model rankings can change dramatically according to the
GT quality. A clear example is SeeSR [34], which moves
from Rank #6 to Rank #2 by LPIPS and from Rank #6
to Rank #1 by DISTS when looking only at images with
higher GT quality. This trend agrees with our assumption
that model outputs can be better than GTs, resulting in those
methods obtaining lower rankings when poorer GTs are in-
cluded. This also indicates the existence of biased evalua-
tions with unreliable GTs, as a solution, in Section 4, we
propose RQI to relieve the impact of low-quality GTs.

4. The perception-distortion tradeoff [4] also exists.
We can see that HAT [9] and PASD [37], the two top-
performing models by distortion metrics PSNR and SSIM,
perform relatively low on perception metrics LPIPS and
DISTS. In contrast, well-performing models by perceptual
metrics (SwinIR [19] and SeeSR [34]) achieve low perfor-
mances on PSNR and SSIM. However, it is worth think-
ing, in cases where GT quality is low, is it still convincing
to compute pixel-wise distortion metrics as fidelity evalu-
ations? For GTs with distortions, the fidelity metrics will
reward methods that fail to remove distortions. We believe
controlling high-quality GT in future SR datasets and de-
veloping adaptive fidelity metrics can relieve the issue.

The analysis above demonstrates that low-quality GTs
can introduce biased SR model evaluations. Therefore, with
the current evaluation paradigm, it is crucial to guarantee
GT quality during evaluations to ensure fairness. However,
even if it is possible to evaluate models only on high-quality
GTs in existing datasets by filtering out the ‘unqualified’
ones, the test samples will be reduced, thus affecting the
reliability of evaluations. To alleviate these problems, in
the following section, we further investigate how to make
fair evaluations with ‘imperfect’ GTs.

4. How to Fairly Evaluate with Imperfect GTs
Our solution is straightforward and simple: Since we do
not recognize GTs as perfect references, we allow cases in

which model outputs (i.e. target images) can achieve better
quality than the GT. Therefore, instead of measuring abso-
lute differences between target and reference (GT) images
as adopted in previous FR metrics [12, 32, 44], we serve
GTs as anchors and measure the relative quality from target
images to GTs (i.e. either better or worse). We name the
proposed scheme RQI (Relative Quality Index), and define
it with the following property:

RQI(IHR, IGT )

{
> 0, IHR has better quality.
< 0, IGT has better quality.

(2)

This design is different from the current FR-IQA scheme
in three aspects, shown in Figure 5:
1. RQI is an order-sensitive metric. Thus, RQI(IA, IB)

and RQI(IB , IA) can lead to opposite results. In con-
trast, in existing FR metrics [12, 32, 44], D(IA, IB) and
D(IB , IA) have the same results, as they suppose that
one of the inputs always shows the best quality.

2. Any two images are considered as pairs during training.
For current FR-IQA scheme, given one reference image
I0 and a sequence of its distorted images {I1, I2, ..., In},
only image pairs {I0, Ii}, i ∈ [1, n] are constructed to
train the model. In RQI, as we consider that GTs also
contain distortions, we select arbitrary two images from
the sequence {I0, I1, ..., In} to construct training pairs
{Ii, Ij}, i, j ∈ [0, n], i ̸= j. This not only yields to a
larger amount of training samples (n2 vs. n), but also
covers more complex cases in which both GTs and target
images may contain varying degradations.

3. RQI calculates discrepancies. For training labels, we
calculate quality discrepancy between Ii and Ij , i.e.
qi−qj , whereas FR-IQA metrics adopt qi as quality label
for image pair {I0, Ii}.
Training an IQA model under the RQI scheme is simple:

we select random image pairs (containing the same content)
from any existing IQA dataset and calculate their quality
differences to use them as discrepancy labels (either posi-
tive or negative). Then, the ordered image pairs are fed to
the model to predict the discrepancy value. Thus, we can
train an arbitrary FR-IQA model on any IQA dataset under
the proposed scheme. In practice, we train three different
IQA models AHIQ [18], MANIQA [36], and TOPIQ [7], on
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Ii

D(·) qi

I0

(a) Traditional FR-IQA scheme

Ij

D(·) qi-qj

Ii

(b) The proposed RQI scheme

Figure 5. The proposed RQI scheme differs from traditional FR-
IQA scheme in three aspects: 1. RQI is order-sensitive. 2. We
substitute reference image I0 to any image Ii in the distorted im-
age sequence. 3. Relative quality discrepancy is used as label.

three different datasets Kadid-10K [21], PieAPP [26] and
PIPAL [16]. Since MANIQA [36] is an NR-IQA model,
we modify it to extract features both from the target image
and the reference image, and then concatenate the features
before the transposed attention block to fuse them.

For all datasets, we construct labels for arbitrary image
pairs and normalize them to [−1, 1]. We also remove the
activation functions in the last regression layer to ensure all
of the models produce negative values. We didn’t train the
models on the perceptual IQA dataset BAPPS [43] since
the 64 × 64 image patch resolution is too small for the se-
lected IQA models. We train all models following their
official configurations, and we select the best-performing
models by looking at their performances on the validation
split. During testing, we fed the target image and GT to the
model in order. We also downscale the input 2 times and
select random crops from different scales to ensure multi-
scale features are captured from high-resolution inputs. The
mean score of the crops is reported as the RQI value.

5. Evaluations

In this section, we conduct two main types of evaluations: a
subjective user study and quantitative comparisons regard-
ing the consistency of image metrics.

5.1. User study and discussion
To analyze how existing image metrics correlate with hu-
man opinions, we first conduct a comprehensive user study
to collect subjective scores on different SR models and
their corresponding GTs. Specifically, we collect user opin-
ions from seven selected SR models, tested on five SR test
datasets DIV2K-wild [2], DRealSR [33], RealSR [6], Set5
[3] and Set14 [39].

Our experiment consists of a two-alternative forced
choice (2AFC) paradigm. The observers were asked to se-
lect the HR image that showed better perceptual quality
from a pair of images containing the same content. For each
source scene, the users compared eight images (7 model
outputs + GT). For each comparison, we collect opinions

DIV2K RealSR DRealSR Set5 & Set14

GT
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94.0%

Figure 6. User statistics of the best quality HR image in four SR
datasets.

from at least 15 users, all of whom have passed the Ishi-
hara test to avoid color blindness. Then, we use Thurstone’s
model [28] to reconstruct a ranking from the user’s opinion.

We carefully control the experiment in a matte dark room
where the monitor is the only light source. Images are
shown in a 3K resolution monitor set to sRGB. We random-
ize the order and placement (left or right) of image pairs to
reduce potential biases. For the DRealSR dataset, since the
HR images are more than 4K resolutions, we only compare
the center-cropped images to avoid scaling effects. In to-
tal, we collect user scores on 8 × 312 = 2, 496 images, far
exceeding image opinions collected in previous SR studies
[30, 34, 37].

In Figure 6, we show statistics of the best-ranked images
by the users from all test sets. Since Set4 and Set15 are
similar and only contain a few images, we combine these
two datasets for evaluation in the rest of the paper. From
the statistics, we can extract several findings.

1. There exist model outputs better than GTs. For
all the datasets, there exist model outputs that are percep-
tually better than GTs, and the percentage increases when
the dataset contains poorer GTs (a small percentage from
DIV2K and more than a half from Set5&Set14).

2. Diffusion-based models are preferred. Most of the
preferred model outputs are from diffusion-based models,
indicating that the diffusion-based scheme has a better ca-
pability to recover distortions and reconstruct finer details.

3. SeeSR [34] is the preferred method by users.
Among all the competing models SeeSR produces most of
the preferred images, which is also consistent with our ob-
servation in Figure 3, where perceptual metrics tend to favor
SeeSR when low-quality GTs are discarded for evaluations.

In Figure 7, we show the Thurstone scores for all the
datasets. We can extract similar observations. More dis-
cussions about SR models’ behavior can be found in the
supplementary material.

5.2. The effectiveness of the RQI scheme
We calculate the Spearman Rank order Correlation Coef-
ficient (SRCC) between IQA model predictions and user
opinions to show how model evaluations correlate with hu-
man perception. Specifically, for each source image, we
obtain model predictions and Thurstone scores on the 7 SR
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Figure 7. Average user scores on different SR models (including GT) in four SR testing datasets.

Table 1. The effectiveness of the proposed RQI scheme. We train
varying IQA models on different datasets using traditional FR-
IQA and the RQI scheme (with subscript ‘R’). SRCC consistency
with user opinions are reported.

Train Set Kadid KadidR PieAPP PieAPPR PIPAL PIPALR

Model AHIQ
DIV2K 0.365 0.506 0.459 0.515 0.431 0.626
RealSR 0.196 0.181 0.095 0.284 0.452 0.474

DRealSR 0.267 0.350 0.244 0.378 0.413 0.467
Set5&14 0.292 0.426 0.203 0.378 0.280 0.472
Model MANIQA
DIV2K 0.502 0.55 0.573 0.570 0.624 0.744
RealSR 0.238 0.258 0.098 0.208 0.470 0.504

DRealSR 0.343 0.343 0.285 0.417 0.372 0.529
Set5&14 0.472 0.504 0.386 0.483 0.544 0.588
Model TOPIQ
DIV2K 0.462 0.490 0.374 0.414 0.490 0.561
RealSR 0.101 0.233 0.107 0.133 0.277 0.328

DRealSR 0.164 0.282 0.003 0.322 0.042 0.357
Set5&14 0.060 0.334 0.035 0.010 0.025 0.271

model outputs and calculate their SRCC. For all images in
a dataset, the averaged SRCC value is reported.

As stated in Section 4, we train three IQA models (AHIQ
[18], MANIQA [36] and TOPIQ [7]) on three IQA datasets
(Kadid-10K [21], PieAPP [26] and PIPAL [16]), both in
traditional FR-IQA setting and in our proposed RQI setting
(with subscript ‘R’). In total 18 models are tested on user
scores collected for four SR datasets.

Table 1 shows the results and we make several observa-
tions. First, we observe a consistent SRCC improvement
on all four testing sets by training under the RQI scheme,
regardless of which IQA model or training set is applied.
This indicates the effectiveness of the scheme. Second,
by calculating the average improvement for each testing
dataset, the improvements on DIV2K, RealSR, DRealSR,
and Set5&Set14 are 0.077, 0.085, 0.146, and 0.138, respec-
tively. The improvements on DRealSR and Set5&Set14 are
relatively larger, consistent with our observation in Figure
6, resulting that when more outputs are preferred than GTs,
the RQI becomes more effective. Third, among three se-
lected IQA models, we observe MANIQA [36] achieves
better consistency, while among all training sets, models
trained on PIPAL [16] perform better. Therefore, we se-

lect the best-performing model RQIMANIQA trained on the
PIPAL dataset for analysis in the rest of the paper.

5.3. Analysis of existing metrics
We further analyze how current evaluation metrics corre-
late with human perception. The selected metrics include
widely used distortion metrics SSIM [32] and PSNR, re-
cent deep-learning based perception metrics DISTS [12]
and LPIPS [44], traditional NR-IQA metrics NIQE [24] and
PI [5], recent deep-learning based NR-IQA metrics Clip-
IQA [29] and MANIQA [36], and the proposed RQI. We
calculate, for each source image, SRCC and Pearson Lin-
ear Correlation Coefficient (PLCC) between metric evalua-
tions and user opinions. We report the averaged values for
each dataset. In addition, since in SR comparisons, the best-
performing model is more valued, we also compute the pre-
diction accuracy for the best-performing model within each
dataset (Winning Rate). The results are shown in Table 2.
Based on this table, we can make a detailed analysis of cur-
rent image evaluation metrics.

1. Traditional distortion image metrics do not cor-
relate with human perception. SSIM [32] and PSNR,
though surprising, are making opposite evaluations with hu-
man perception on all the datasets. As we collect user opin-
ions purely on their perceptual impressions of the images,
the results further demonstrate the perception-distortion
trade-off [4]. However, we believe the inconsistency partly
stems from the issue of unreliable GTs, therefore, we urge
for high-quality GTs in future SR datasets.

2. Deep-learning-based perceptual metrics perform
similarly. Both DISTS [12] and LPIPS [44] show some
consistency on the DIV2K and Set5&Set14 datasets but fail
on the RealSR and DRealSR datasets. This is probably due
to the poor image quality in the RealSR dataset and the
larger image resolution size in the DRealSR dataset.

3. Traditional NR-IQA metrics do have good consis-
tency. Two traditional NR-IQA metrics, NIQE [24] and PI
[5], show good consistency with human perception. This
indicates the power of traditional NSS features for image
quality measurement.

4. Deep-learning based NR-IQA also present some
degree of consistency. The two deep-learning based NR-
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Table 2. Consistency evaluations of current metrics with human perception. SRCC, PLCC and winning rate are reported.

Dataset Criterion SSIM PSNR DISTS LPIPS NIQE PI Clip-IQA MANIQA RQI

DIV2K [2]
SRCC -0.348 -0.079 0.610 0.415 0.516 0.565 0.593 0.554 0.744
PLCC -0.360 -0.124 0.627 0.452 0.492 0.549 0.593 0.553 0.785

Win Rate 0.05 0.19 0.44 0.41 0.44 0.57 0.50 0.47 0.65

RealSR [6]
SRCC -0.220 -0.116 0.048 0.008 0.263 0.317 0.377 0.187 0.504
PLCC -0.289 -0.160 0.027 -0.031 0.282 0.325 0.437 0.212 0.484

Win Rate 0.04 0.05 0.12 0.11 0.47 0.51 0.58 0.32 0.49

DRealSR [33]
SRCC -0.354 -0.355 -0.102 -0.141 0.240 0.303 0.268 0.284 0.529
PLCC -0.409 -0.405 -0.129 -0.143 0.222 0.301 0.268 0.331 0.603

Win Rate 0.02 0.01 0.10 0.04 0.44 0.46 0.38 0.35 0.53

Set5&Set14 [3, 39]
SRCC -0.321 -0.204 0.403 0.282 0.578 0.466 0.642 0.437 0.664
PLCC -0.387 -0.239 0.414 0.293 0.527 0.506 0.683 0.443 0.673

Win Rate 0.06 0.06 0.35 0.24 0.41 0.29 0.29 0.24 0.35

IQA models, Clip-IQA [29] and MANIQA [36], also
achieve user consistency to some extend.

From 3. and 4. we should notice that all the four
NR-IQA metrics (NIQE [24], PI [5], Clip-IQA [29] and
MANIQA [36]) are out performing the FR-IQA metrics
on RealSR, DRealSR and Set5&Set14 datasets. Since GT
quality in these datasets can be poor, the result further
demonstrates the inconsistency can be attributed to the poor
quality of the reference GT images.

5. RQI outperforms the other metrics. RQI achieves
the best consistency with human perception in most cases,
and we attribute its superior performance to the training
scheme that covers complicate cases where both target and
reference image contain distortions. For more qualitative
analysis of existing metrics, please refer to Section 5.5.

5.4. Evaluation on other SR-IQA benchmarks
We further evaluate all the metrics on other two SR-IQA
benchmarks BSD-SR [23], QADS [49], and one general
IQA dataset Kadid-10K [21]. The BSD-SR dataset con-
tains 30 source images and 1,620 HR images generated
from 6 scales, the QADS dataset contains 20 source images
and 980 HR images with interpolation factors 2, 4, and 8,
and the Kadid-10K dataset contains 81 source images and
10,125 distorted images. Images in BSD-SR and QADS
are produced by varying SR methods, while the Kadid-
10K dataset contains images generated from different dis-
tortions. All datasets collect Mean Opinion Scores (MOS)
from users as perception scores. We test the metrics on the
whole data of three datasets and report SRCC and PLCC
values. Both mean consistency over each source image and
overall consistency are reported. Note that we do not eval-
uate DISTS [12] on the Kadid-10K dataset since the model
is pre-trained on this same dataset. We show the results in
Table 3 and make the following observations.

For the two SR-IQA datasets (BSD-SR and QADS), tra-
ditional metrics such as SSIM [32] achieve good consis-
tency when evaluating outputs from the same source im-
ages. We attribute this to the simple SR models (interpo-

lation, dictionary-based, and early CNN models) collected
in the two datasets. Therefore, it is relatively easier to dis-
tinguish image quality in early SR models. Yet their per-
formances are limited in evaluating all images across con-
tents. Second, the FR-IQA metrics generally perform better
than NR-IQA metrics, which seems to be contradictory with
the results in Table 2. However, HR images in these two
datasets are produced by earlier SR models, mostly show-
ing poorer quality than GTs. As GTs in these datasets are
serving as ‘better’ references, FR-IQA metrics are able to
make better predictions than metrics that do not consider
reference images. Third, among all the metrics, RQI can
perform stably across all datasets and criteria. Note that we
train RQI only by relative quality discrepancy, but it still
achieves good consistency across image contents, on differ-
ent SR scales, and even on the general IQA task. All the
results validate the generalized ability of the RQI metric.

5.5. Qualitative analysis
Figure 8 shows how existing distortion FR-IQA metrics,
perception FR-IQA metrics, and NR-IQA metrics can fail.
Among them, the distortion FR-IQA metric SSIM [32] (the
up-left case) tends to favor blur regions (RealESRGAN)
more than textures (SeeSR), which also matches previous
findings [44]. For NR-IQA metrics, though they perform
well in evaluating overall image quality, they fail when im-
age semantics change from GTs due to their lack of refer-
ence. As shown up-right, the multi-model based NR-IQA
metric ClipIQA [29] fails to evaluate character consistency
for BSRGAN and PASD, since it cannot refer to correct se-
mantics. Finally, perceptual FR-IQA metrics can easily fail
when GT quality is poor (two cases at the bottom). In these
cases, we show that when GT contains either vague details
or distortions, the two perceptual FR-IQA metrics LPIPS
[44] and DISTS [12] favor blurred results (HAT) more than
sharp ones (SeeSR) since they are perceptually closer to the
reference GTs. In contrast, the proposed RQI is percep-
tually accurate, aware of semantic consistency, and avoids
biased evaluations caused by unreliable GTs.
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Table 3. Consistency evaluations of image metrics on three IQA benchmarks. BSD-SR [23] and QADS [49] are two SR-IQA datasets, and
Kadid-10K [21] is a general IQA dataset. The best and second best performances are in bold and underscore.

Dataset Criterion SSIM PSNR DISTS LPIPS NIQE PI Clip-IQA MANIQA RQI

BSD-SR [23]

SRCCmean 0.949 0.945 0.947 0.901 0.668 0.875 0.793 0.789 0.901
PLCCmean 0.945 0.940 0.950 0.910 0.664 0.893 0.786 0.815 0.901
SRCCall 0.617 0.438 0.827 0.624 0.639 0.849 0.703 0.759 0.842
PLCCall 0.625 0.454 0.828 0.611 0.643 0.868 0.708 0.760 0.840

QADS [49]

SRCCmean 0.927 0.727 0.887 0.832 0.420 0.760 0.704 0.842 0.912
PLCCmean 0.923 0.562 0.869 0.823 0.398 0.704 0.685 0.826 0.910
SRCCall 0.552 0.193 0.703 0.619 0.394 0.708 0.489 0.759 0.828
PLCCall 0.547 0.213 0.706 0.618 0.327 0.651 0.488 0.733 0.822

Kadid-10K [21]

SRCCmean 0.649 0.261 - 0.809 0.393 0.406 0.558 0.548 0.669
PLCCmean 0.633 0.247 - 0.801 0.379 0.376 0.480 0.531 0.651
SRCCall 0.595 0.231 - 0.741 0.435 0.474 0.534 0.574 0.666
PLCCall 0.585 0.229 - 0.720 0.389 0.425 0.485 0.548 0.649

GT BSRGAN PASD

0.372

GT SeeSRRealESRGAN

User Perception
SSIM
RQI

User Perception
ClipIQA

RQI

GT HAT SeeSR

User Perception

LPIPS

RQI

GT HAT SeeSR

User Perception

DISTS

RQI

0.803
0.778 0.717
0.642 0.757

0.070 0.786
0.693 0.635
0.456 0.604

0.498

0.892

0.656

0.652

0.772

0.807

0.569

0.767

0.802

0.650

0.656

0.911

Figure 8. We show different cases where existing metrics fail. Up-left: failure case for the distortion FR-IQA metric SSIM [32]. Up-right:
failure case for the NR-IQA metric ClipIQA [29]. Bottom: failure cases for perception FR-IQA metrics LPIPS [44] and DISTS [12]. As a
comparison, RQI handles all the cases correctly. All scores are normalized to [0,1] for easier comparisons. Please zoom in for better view.

6. Discussion

We point out the existence of poor-quality GTs in existing
SR datasets and raise discussions about how future SR re-
search can be developed. First, we urge careful considera-
tion in building future SR datasets, where GT quality should
be meticulously controlled. Second, we observe certain im-
ages can be consistently challenging for existing SR mod-
els, suggesting a further development of the models upon
the challenging cases. Third, with imperfect GTs in current
SR datasets, we propose RQI to fairly evaluate models, and
we expect the same consideration can be taken when fu-
ture metrics are developed. Last, it will also be interesting
to explore if the same issue exists in other low-level image
processing tasks such as deblurring [25], denoising [1], and

deraining [38], etc. and we leave this as a future work.

7. Conclusion

In this paper, we study the emerging inconsistency between
perceptual and quantitative evaluations that bothers current
SR models. We point out the poor quality of GTs is also
responsible for this inconsistency. After demonstrating how
GT quality affects SR model evaluations, we propose a sim-
ple yet effective scheme, RQI, to relieve the evaluation bi-
ases caused by imperfect GTs. We show that the proposed
RQI can achieve better consistency with human perception
data, both on a new user study and on existing benchmarks.
We believe our research will shed light on both future SR
research and evaluations.
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Appendix

A. More analysis of how GT quality affects SR
evaluations

In the main paper, we employed the KonIQ++ [27] model to
assess GT quality and showed there exists an inherent con-
nection between GT quality and model evaluations. In this
part, we show that similar observation can also be made
from other IQA model predictions, and that this connec-
tion is not occasional. We employ another NR-IQA model
MANIQA [36] to assess GT quality, and discard images
based on its prediction. The evaluation results are shown
in Figure 9, where we can see a consistent drop in model
performances. In Figure 10, we show that by randomly dis-
carding images, this consistent performance drop will not
occur. Figures are shown in unified scale.

B. Implementation details
The selected models are trained following their official im-
plementations, i.e. for all the models, the learning rate
is set to 10−4 with weight decay 10−5. The batch size
is set to 4 for AHIQ [18], and 8 for MANIQA [36] and
TOPIQ [7]. AHIQ [18] and MANIQA [36] randomly crop
image patches with size 224, while TOPIQ [7] randomly
crop image patches with size 384. The crops are randomly
flipped during training for augmentation. We split the train-
ing datasets with 20% images according to contents as the
validation set, and select the best-performing models upon
their performances on the validation set.

During testing, we randomly crop patches from the in-
puts. The patches are cropped from the same regions of the
target image and GT. Since we crop patches from 3 different
scales, in each scale, 20 patches are cropped and the final
score is averaged across all patches. The downscaling and
cropping will only operate on images that are larger than the

required input size of the models (i.e. 224 for AHIQ [18]
and MANIQA [36], and 384 for TOPIQ [7]).

C. More discussions about SR models
In this section, we discuss the behaviors of SR models
(mainly diffusion-based models) in more detail. We show
qualitative examples in which model outputs are percep-
tually better than GTs, and then briefly analyze the three
diffusion-based models StableSR [30], SeeSR [34] and
PASD [37].

C.1. More examples of perceptually poorer GTs and
better model outputs

In Figures 11 - 14, we show cases in which model outputs
are better than GTs from datasets DIV2K [2], RealSR [6],
DRealSR [33], Set5 [3] and Set14 [39] respectively. As
shown, GTs across datasets exhibit noise, blur, compres-
sion artifacts, and vague details. For DIV2K [2], the overall
GT quality is better, thus less suffers from the problems.
However, for Set5&Set14, where the images were collected
in early ages, current models can easily produce better out-
puts than GT quality. This further indicates that, with the
advancing of methods, it is also necessary to update corre-
sponding datasets and evaluation metrics to match the re-
newing technology.

C.2. More discussions about diffusion-based SR
models and how they affect human percep-
tion

Though generally, diffusion-based models can produce per-
ceptually better images, from user preferences, we also find
that the three evaluated diffusion-based models can perform
differently from each other. In this part, we briefly discuss
how the models perform and how the results affect the per-
ceptual evaluations.
• StableSR [30] leans to increase image contrast by sharp-

ening the edges. In cases where edges are thin, the overall
image contrast is increased, leading to better perceptual
quality. However, when images contain strong edges, Sta-
bleSR tends to over-process the edges which brings arti-
facts, leading to poorer perceptual evaluations (see Figure
15).

• SeeSR [34] produces perceptually better images in most
cases, due to its strong generation power. However, we
find it sometimes changes image semantics, affecting user
choices during experiments (see Figure 16).

• PASD [37] is also capable of recovering high-quality de-
tails, however, the model leans to produce out-of-focus
effects (see Figure 17). During experiments, we find this
effect can happen on the wrong subjects in the image,
therefore leading to poorer perceptual quality.
Note that even with different behaviors of the diffusion-
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Figure 9. Model evaluation results when discard low quality GTs according to MANIQA [36] predictions. Similar observations can also
be made to those of the main paper.
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Figure 10. Model evaluation results when randomly discard images. The connection between GT quality and model evaluations does not
exist in this scenario.

based models, the proposed RQI can still achieve good con-
sistency with humans on varying cases.

D. Ablation study

In this section, we show more ablation results of the pro-
posed RQI scheme. Since we propose training RQI with im-
age pairs that contain arbitrary distortions, the images con-
tain distortions across types and levels. Therefore, we com-
pare training RQI with image pairs containing the same type
of distortions, denoted as RQIsingle distortion. We also com-
pare testing RQI on single-scale images, instead of cropping
multi-scale patches, denoted as RQIsingle-scale. The models
are compared with our full model on user opinions col-
lected from four datasets DIV2K [2], RealSR [6], DRealSR
[33], and Set5&Set14 [3, 39]. RQIsingle-scale is not tested on
Set5&Set14, since the image resolutions are low and cannot
be down-scaled. The results are shown in Table 4.

From Table 4, several observations can be made. First,
there is a significant performance drop when training RQI
merely on same-distortion image pairs. We attribute this
to the different types of distortions that GT and model out-
puts may contain. GTs usually contain common distortions
(noise, blur, compression artifacts .etc), while model out-
puts are introducing algorithms-caused distortions, featur-
ing different representations from each other. However, by
training RQI on arbitrary distortions, the model is capa-
ble of measuring quality that covers complex distortions,
showing superior performance on all four datasets. Second,

we also observe a slight performance improvement on Re-
alSR [6], but a relatively larger performance gain on DIV2K
[2] and DRealSR [33] when testing on multi-scale patches.
Since image resolutions in DIV2K [2] and DRealSR [33]
are relatively larger, evaluating RQI in multi-scale not only
captures detailed texture quality but also measures structure
and semantic consistency, leading to better alignment with
human perception.

E. More qualitative comparisons
In this section, we provide more qualitative comparisons to
show how different types of metrics can fail and the RQI
results. For easier comparison, all scores are normalized to
[0, 1], and a higher score indicates better visual quality. Fig-
ure 18 shows two distortion-based FR-IQA metrics SSIM
[32] and PSNR, where they favor blurry regions more than
detailed textures, leading to contradictory predictions with
human perception. Figure 19 shows four NR-IQA metrics
PI [5], NIQE [24], Clip-IQA [29] and MANIQA [36], all of
which can fail on subtle structure or semantic changes due
to the lack of references. Figure 20 shows two perception-
based FR-IQA metrics LPIPS [44] and DISTS [12]. As can
be seen, the two metrics suffer from poor GT quality, thus
can not make correct evaluations when model outputs show
better quality. As a comparison, RQI makes correct eval-
uations on all the above cases, showing its superiority as a
reliable image metric for SR evaluations.
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(a) GT (b) SeeSR (c) GT (d) SeeSR
Figure 11. GT samples (left side) with relatively poorer quality from DIV2K dataset [2], and model outputs (right side) that show better
quality than GTs.

(a) GT (b) PASD (c) GT (d) SeeSR
Figure 12. GT samples (left side) with relatively poorer quality from RealSR dataset [6], and model outputs (right side) that show better
quality than GTs.

(a) GT (b) SeeSR (c) GT (d) SeeSR
Figure 13. GT samples (left side) with relatively poorer quality from DRealSR dataset [33], and model outputs (right side) that show better
quality than GTs.

(a) GT (b) PASD (c) GT (d) PASD
Figure 14. GT samples (left side) with relatively poorer quality from Set5 [3] and Set14 [39], and model outputs (right side) that show
better quality than GTs.
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(a) GT (b) StableSR (c) BSRGAN (d) GT (e) StableSR (f) HAT
Figure 15. We show that StableSR [30] tends to increase image contrast by sharpening the edges. This may increase perceptual quality for
thin edges (left case) but produce ringing artifacts for strong edges (right case), reducing image quality in contrast.

(a) GT (b) SeeSR (c) PASD (d) GT (e) SeeSR (f) HAT
Figure 16. We show that though SeeSR [34] improves image quality in most cases, it alters image semantics in some cases, affecting user
perception.

(a) GT (b) PASD (c) SeeSR (d) GT (e) PASD (f) SeeSR
Figure 17. We show that PASD [37] tends to produce out-of-focus effect (left side). When this effect is produced on wrong subjects (right
side), the perceptual quality will be reduced.
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Figure 18. Distortion-based FR-IQA metrics SSIM [32] and PSNR tend to favor blurry regions over textures, leading to contradictory
predictions with human perception.
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Table 4. Ablation study of the RQI scheme.
Dataset DIV2K [2] RealSR [6] DRealSR [33] Set5&Set14

Creterion SRCC PLCC Win Rate SRCC PLCC Win Rate SRCC PLCC Win Rate SRCC PLCC Win Rate
RQIsingle distortion 0.653 0.691 0.58 0.487 0.474 0.47 0.416 0.487 0.52 0.649 0.656 0.33

RQIsingle-scale 0.721 0.758 0.63 0.490 0.479 0.48 0.493 0.550 0.53 - - -
RQIfull 0.744 0.785 0.65 0.504 0.484 0.49 0.529 0.603 0.53 0.664 0.673 0.35
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Figure 19. NR-IQA metrics PI [5], NIQE [24], Clip-IQA [29] and MANIQA [36] can easily fail on cases where subtle structure of
semantics are changed, due to the lack of proper references.
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Figure 20. Perception-based FR-IQA metrics LPIPS [44] and DISTS [12] can fail when GT quality is relatively lower. They make
contradictory evaluations for models that output perceptually higher results than GTs.
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